Named Project Arch, the facility will be the first large-scale operation of its kind in the country. It's expected to break ground next year. Photo via Getty Images

Fresh off a recent raise, an energy transition startup has been selected for a U.S. Department of Energy-backed $80 million project.

MetOx International, which develops and manufactures high-temperature superconducting (HTS) wire and announced it closed a $25 million series B extension, will negotiate $80 million in funding from the DOE to stand up an advanced manufacturing facility in the southeastern United States.

Named Project Arch, the facility will be the first large-scale operation of its kind in the country. It's expected to break ground next year.

"We are thrilled to receive this support from the Department of Energy, which allows us to bring cutting-edge manufacturing and over 200 high tech job opportunities to the southeastern United States," Bud Vos, CEO of MetOx, says in a statement. "Project Arch not only represents a transformative milestone for our company, but it establishes the U.S. as a true leader in HTS technology.

"This project will have an immediate and tangible impact on the local economy and the energy sector, powering new technologies that rely on the unmatched power-carrying capacity of superconductors," he continues. "Through Project Arch, we are driving a more resilient, efficient, and sustainable energy future—for the U.S. and the world."

HTS wire technology is critical for the energy transition, especially amid rising data center growth, and for next generation wind turbines and interconnections.

"The transition to America's clean energy future is being shaped by communities filled with the valuable talent and experience that comes from powering our country for decades," adds U.S. Secretary of Energy Jennifer Granholm. "By leveraging the know-how and skillset of the former coal workforce, we are strengthening our national security while helping advance forward-facing technologies and revitalize communities across the nation."

MetOx's technology originated out of the University of Houston and was founded in 1998 by Alex Ignatiev, UH professor emeritus of physics and a fellow of the National Academy of Inventors. Last year, the company secured $3 million in funding from the U.S. Department of Energy to support the advancement of its proprietary manufacturing technology for its HTS wire.

The fresh funding will go toward advancing the company's Xeus HTS wire technology. Photo via metoxtech.com

Houston superconductor tech manufacturer raises $25M

money moves

A Houston company has closed its series B extension at $25 million.

MetOx International, which develops and manufactures high-temperature superconducting (HTS) wire, announced it closed a $25 million series B extension. Centaurus Capital, an energy-focused family office, and New System Ventures, a climate and energy transition-focused venture firm, led the round with participation from other investors.

"MetOx has developed a robust and highly scalable operation, and we are thrilled to partner with the Company as it enters this pivotal growth stage," says John Arnold, founder of Centaurus, in a news release. "The market for HTS is expanding at an unprecedented pace, with demand for HTS far outweighing supply. MetOx is poised to be the leading U.S. HTS producer, closing the supply gap and bringing dramatic capacity to high power innovations and applications. Their progress and potential are unmatched in the field, and we are proud to support their growth."

The fresh funding will go toward advancing the company's Xeus HTS wire technology for key energy transition applications by expanding MetOx's U.S.-based manufacturing capabilities to meet demand.

"This funding marks a pivotal step in our mission to revolutionize the energy and technology sectors with our advanced power delivery technology and accelerate delivery for our customers and partners. HTS is critical to enhancing the efficiency of our electric grid and enabling technological developments that, in many cases, would not be viable or even possible without superconductor technology," adds Bud Vos, CEO of MetOx. "Support from investors such as Centaurus and NSV not only provides the financial resources and strategic support required for accelerated scaleup, but also validates the broad reach of our technology across energy, data center, medical, and defense industries."

HTS wire technology is critical for the energy transition, especially amid rising data center growth, and for next generation wind turbines and interconnections.

MetOx's technology originated out of the University of Houston and was founded in 1998 by Alex Ignatiev, UH professor emeritus of physics and a fellow of the National Academy of Inventors. Last year, the company secured $3 million in funding from the U.S. Department of Energy to support the advancement of its proprietary manufacturing technology for its HTS wire.

"MetOx's HTS technology aligns with our systems-level research and offers a unique opportunity to dramatically accelerate the energy transition," says Ian Samuels, founder and managing partner at NSV. "MetOx's Xeus wire stands to be a force multiplier in clean energy generation and high-power transmission and distribution, enabling load growth and the deployment of power-dense data centers. NSV is excited to support MetOx as it scales domestic manufacturing capacity."

———

This article originally ran on InnovationMap.

Two UH-affiliated organizations scored DOE funding for advancing superconductivity projects. Photo courtesy of UH

University of Houston pockets $5M in DOE funding for superconductivity projects

taking on tape

A program within the U.S. Department of Energy has deployed $10 million into three projects working on superconducting tape innovation. Two of these projects are based on research from the University of Houston.

The DOE's Advanced Research Projects Agency-Energy, or ARPA-E, issued the funding through its Novel Superconducting Technologies for Conductors Exploratory Topic. Superconductivity — found only in certain materials — is a focus point for the DOE because it allows for the conduction of direct electric current without resistance or energy loss.

The demand for HTS, or high-temperature superconducting, tapes has risen as the country moves toward net-zero energy, driving up the cost of the materials, which are manufactured outside of the U.S. Here's where the DOE wants to help.

“If we can improve superconductors and manufacture them here in the United States, we can ultimately speed up the energy transition through enabling cost savings, faster production, and improved capability,” ARPA-E Director Evelyn N. Wang says in the DOE press release. “The teams [selected] will all pursue ARPA-E’s mission to lower emissions, bolster national security, increase energy independence and improve energy efficiency through their critical research.”

Selva Research Group, a team from UH focused on scaling HTS tape production and led by Venkat Selvamanickam, M.D. Anderson Chair Professor of Mechanical Engineering and director of the Advanced Manufacturing Institute, received a $2 million grant.

“Even though our superconducting tape is three times better than today’s industry products, for us to be able to take it to full-scale commercialization, we need to produce it faster and at a lower cost while maintaining its high quality,” Selvamanickam says in a UH press release. “This funding is to address this challenge and it’s an important step forward towards commercialization of our technology.”

The other UH-based team is MetOx Technologies, which secured $3 million in funding to support the advancement of its proprietary manufacturing technology for its HTS wire. Co-founded in 1998 by Alex Ignatiev, UH professor emeritus of physics and a fellow of the National Academy of Inventors, who also serves as the company’s chief science officer, MetOx plans to open its new manufacturing facility by the end of the year.

“This ARPA-E funding not only allows MetOx to advance its HTS wire fabrication process that I developed at UH, but also signifies the DOE’s recognition that MetOx is important,” Ignatiev says in the release. “The cost-effective HTS product that MetOx is developing at scale is critical to the national and global application of HTS for the world’s energy needs.”

The ARPA-E funding emphasizes the need for advancement of HTS tape innovation, and UH-affiliated groups receiving two of the three grants indicates the school is a leader in the space — something UH Vice President for Energy and Innovation Ramanan Krishnamoorti is proud of.

“These awards recognize the relevance and quality of the research at UH and our commitment to making a meaningful impact by addressing society’s needs and challenges by transitioning innovations out of research labs and into the real world,” Krishnamoorti says in the release.

High-temperature superconducting tapes have a high potential in the energy transition. Photo courtesy of UH

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Global co. opens state-of-the-art energy innovation hub in Houston

flagship facility

French multinational company Schneider Electric has opened a new 10,500-square-foot, state-of-the-art Energy Innovation Center in Houston.

The new facility is located in Houston’s Energy Corridor and is designed to “foster increased collaboration and technological advancements across the entire value chain,” according to a news release from the company. The new Houston location joins Schneider's existing innovation hubs in Paris, Singapore and Bangalore.

The venue will serve as a training center for process control engineers, production superintendents, manufacturing managers, technical leads and plant operations personnel. It can simulate various real-world scenarios in refineries, combined-cycle power plants, ethylene plants, recovery boilers and chemical reactors.

It includes an interactive control room and artificial Intelligence applications that “highlight the future of industrial automation,” according to the release.

"Digitalization is significantly enhancing the global competitiveness of the U.S. through continuous innovation and increased investment into next-generation technology," Aamir Paul, Schneider Electric's President of North America Operations, said in the release.

Texas has over 4,100 Schneider Electric employees, the most among U.S. states, and has facilities in El Paso, the Dallas-Fort Worth metroplex and other areas.

"This flagship facility in the Energy Capital of the World underscores our commitment to driving the future of software-defined automation for our customers in Houston and beyond,” Paul added in the release. “With this announcement, we are excited to continue supporting the nation's ambitions around competitive, efficient and cost-effective manufacturing."

Schneider Electric says the new Houston facility is part of its expansion plans in the U.S. The company plans to invest over $700 million in its U.S. operations through 2027, which also includes an expansion at its El Paso campus.

The company also announced plans to invest in solar and battery storage systems developed, built, and operated by Houston-based ENGIE North America last year. Read more here.

Hydrogen industry could have major impact on Texas water resources, study says

water works

Just as the data center industry thrives on electricity, the hydrogen industry thrives on water.

A new study from researchers at the University of Texas at Austin found that by 2050, new hydrogen production facilities could account for 2 percent to nearly 7 percent of water demand in the state. The impact could be especially dramatic along the Gulf Coast, where most of the state’s hydrogen production facilities are already built or are being planned.

The research was published in the journal Sustainability.

The study reported that "most existing and proposed hydrogen production infrastructures are within projected water-strained cities and counties, such as Houston in Harris County and Corpus Christi in Nueces County."

Compared with municipal water supplies or irrigation systems, the hydrogen industry’s demand for water is comparatively small, the study’s lead author, Ning Lin, an energy economist at UT’s Bureau of Economic Geology, said in a news release. But hydrogen-fueled demand could strain communities that already are grappling with current and future water shortages.

“Where you put a project can make a huge difference locally,” Lin says. “With multiple hydrogen facilities planned in water-stressed Gulf Coast counties, this study highlights the urgent need for integrated water and energy planning and provides a solid foundation to help policymakers, industry, and communities make informed decisions about hydrogen and water management.”

To forecast water demand, Lin and her colleagues crunched data from a 2024 National Petroleum Council study that estimated the regional hydrogen demand from 2030 to 2050 based on two energy policy scenarios.

As part of the study, researchers reviewed water use and water quality for various hydrogen production methods that affect whether water remaining from production can be recycled.

“In order to plan for water needs, somebody has to figure out what those future demands might look like, and this paper puts some numbers to (it) that, I think, will be very helpful,” Robert Mace, executive director of the Meadows Center for Water and the Environment at Texas State University, who was not part of the study, added in the release.

Co-founder of Houston hypersonic engine co. lands on Inc. 500 list

Ranking It

Five Houston female founders have been recognized by Inc. Magazine for their innovation, including Sassie Duggleby, the CEO and co-founder of groundbreaking space tech and engine company Venus Aerospace.

The women were named to Inc.'s Female Founders 500 list, which features female entrepreneurs based in the U.S. The group attracted approximately $9 billion in 2024 revenue and $10.6 billion in funding, according to Inc.

“Female founders know what struggle is, but they’re also experts of improvisation, adaptability, and creativity. The women featured on this year’s list exemplify these qualities," Diana Ransom, Inc. executive editor said in a release. "Through times of uncertainty, their unwavering dedication and steadfast leadership are not only inspiring but vital to driving progress.”

Venus Aerospace is the Houston-based company that is developing reusable hypersonic technology that it hopes "will revolutionize and redefine the boundaries of aviation, defense, and beyond." The company won the in the Deep Tech Business category in the 2024 Houston Innovation Awards. Duggleby also serves on the Texas Space Commission board of directors.

Duggleby is joined by four other Houston founders:

  • Stephanie Murphy, CEO and executive chairman of Aegis Aerospace, which provides space services, spaceflight product development, and engineering services. Murphy also serves on the Texas Aerospace Research and Space Economy Consortium Executive Committee.
  • Emily Cisek, founder of The Postage, now known as Paige, a comprehensive life planning and succession software platform for families and small businesses. The company won the Female-Owned Business category in the 2023 Houston Innovation Awards.
  • Margo Jordan, founder of adolescent mental health startup Enrichly, which uses AI-driven self-esteem development and behavioral insights to boost student performance.
  • Nina Magon, founder of Nina Magon Studio / Nina Magon Consumer Products, a residential and commercial interior design company.
"While I don't know many of the ladies on this list, I do know they're some of the most tenacious role models in entrepreneurship. I'm beyond honored to be included among them," Duggleby said in a LinkedIn post.
Twenty-eight Texas female founders made this list, including Kendra Scott and Allison Ellsworth, co-founder of Poppi, and many others.

---

A version of this story first appeared on our sister site, InnovationMap.com.