The study will look at improving sustainability within George Bush Intercontinental Airport in Houston. Photo courtesy of Airbus

A few major players have teamed up to look into making air travel more sustainable — and it's all happening in Houston.

The Center for Houston’s Future, Airbus, and Houston Airports have signed a memorandum of understanding intended to study the “feasibility of a hydrogen hub at George Bush Intercontinental Airport." The study, which will conclude in March of 2025, will include the participants that will collaborate ways to rethink how their infrastructures could be designed and operated to reduce an overall environmental footprint, and lead to hydrogen-powered aircrafts like the ones Airbus plans to bring to fruition by 2035.

In 2020, Airbus debuted its ZEROe hydrogen-powered aircraft project. The “Hydrogen Hub at Airports'' concept by Airbus unites key airport ecosystem players to develop ways to decarbonize all airport-associated infrastructure with hydrogen. The study will include airport ground transportation, airport heating, end-use in aviation, and possibly ways to supply adjacent customers in transport and local industries.

The use of hydrogen to power future aircraft aims to assist in eliminating aircraft CO2 emissions in the air, and also can help decarbonize air transport on the ground. With Houston being such a large city, and a destination for some many visiting on business, the Houston airports was an easy spot to assign the study.

"Houston’s airports are experiencing tremendous growth, connecting our city to the world like never before,” Jim Szczesniak, the aviation director for the city of Houston, says in a news release. “As we continue to expand and modernize our facilities, participating in this sustainability study is crucial. Continuing to build a sustainable airport system will ensure a healthy future for Houston, attract top talent and businesses, and demonstrate our commitment to being a responsible global citizen.

"This study will provide us with valuable insights to guide our development and position Houston as a global leader in sustainable aviation innovation for generations to come.”

The CHF was a founding organizer of the HyVelocity Hydrogen Hub, which was selected by the U.S. Department of Energy as one of seven hydrogen hubs in the nation, and will work in the Houston area and the Gulf Coast. The HyVelocity Hydrogen Hub is eligible to receive up to $1.2 billion as part of a Bipartisan Infrastructure Law funding to advance domestic hydrogen production.

“The Center for Houston’s Future is pleased to have played a crucial role in bringing together the partners for this study,” Brett Perlman, the center's outgoing CEO and president, adds. “With Houston’s role as the world’s energy capital, our record of energy innovation and desire to lead in the business of low-carbon energy, Houston is the perfect place to develop our airports as North American clean hydrogen pioneers.

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”