Switching fully to electric vehicles could prevent 157 premature deaths each month in Houston. Photo courtesy

A new study from the University of Houston shows that there's no one-size-fits-all strategy for full vehicle electrification in America's largest U.S. cities.

The study by Ali Mousavinezhad and Yunsoo Choi considered changes in air pollution, specifically PM2.5 and ozone levels, in Houston, Los Angeles, New York and Chicago under different electrification scenarios and how the changes could impact public health.

“Our findings indicate vehicle electrification generally contributes to reducing greenhouse gas emissions, improving air quality, and lowering the mortality rate associated with exposure to toxic air pollutants,” Mousavinezhad said in a statement.

However, Mousavinezhad and Choi found that full electrification in Los Angeles could have negative impacts on public health.

Switching fully to electric vehicles could prevent 157 premature deaths each month in Houston, 796 deaths in New York and 328 in Chicago, according to the study. But in Los Angeles, full electrification would increase mortality.

Additionally, full electrification would save between $51 million to $249 million per day for New York, Chicago, and Houston in health-related costs. But Los Angeles would face economic losses of up to $18 million per day.

This was largely due to the unique weather and geography in Los Angeles that can trap air pollutants that harm the lungs. The study found that full electrification would lead to increases in PM2.5 and MDA8 ozone. According to UH, the study reveals the importance and "complexity of air quality management."

“The four largest U.S. cities have distinct anthropogenic sources of air pollutants and greenhouse gases, “Choi added. “Each city requires unique regulations or strategies, including different scenarios for the adoption of electric vehicles, to reduce concentrations of these pollutants and greenhouse gases effectively.”

Mousavinezhad, lead author, is a recent Ph.D. graduate from UH. Choi is a professor of atmospheric chemistry, AI deep learning, air quality modeling and satellite remote sensing. The study, titled “Air quality and health co-benefits of vehicle electrification and emission controls in the most populated United States urban hubs: insights from New York, Los Angeles, Chicago and Houston,” was published in the journal Science of the Total Environment earlier this year.

Earlier this year, Texas ranked low in a study that looked at the closest EV charging stations equivalent to a trip to the gas station. However, another study showed that Texas is among the top of the pack for states with the most electric vehicle registrations, but Houston fell behind other large metros in the state for EV friendliness. Click here to read more about both reports.
Lignium combats greenhouse gasses with a green fuel that boasts an enviably low carbon footprint. Photo courtesy of Lignium

Why this growing Chilean clean energy company moved its HQ to Houston

future of farming

In Houston, air pollution is usually more of an abstract concept than a harsh reality. But in parts of Chile, the consequences of heating homes with wet wood are catching up to residents.

“Given all the contamination, there are times kids aren’t allowed to go to school. The air pollution is really affecting people’s health,” says Agustín Ríos, COO of Lignium Energy.

Additionally, the methane and nitrous oxide produced by cattle farming are a problem. But Lignium Energy, an international company started in Chile and now headquartered in Houston’s Greentown Labs, has a solution that can solve both problems by upending the latter.

“There’s a lack of solutions with the problem of manure. Methane gases are destroying our planet,” says CEO and co-founder Enrique Guzmán. He goes on to say that most solutions currently being developed are expensive and complex. But not Lignium Energy’s method, invented by co-founder José Antonio Caraball.

Caraball has patented an extraordinarily simple concept. Lignium separates the solid from liquid excretions, then cleans the solid to generate a hay-like biomass. Biomass refers to organic matter that can be used as fuel. What Lignium makes from the cattle evacuations is a clean, odorless and highly calorific biomass.

Essentially, Lignium combats greenhouse gasses with a green fuel that boasts an enviably low carbon footprint. “Our process is very cheap and very simple. That’s why we are a great solution,” explains Guzmán.

Caraball, an industrial engineer, came up with the idea six years ago, says Guzmán. Five years ago, he began working with the company, one year ago, Guzmán and Ríos picked up and moved to Houston.

“We decided to move out of Chile due to market size,” says Ríos. However, the product is already being sold to consumers in its homeland.

Why Houston? The reason was twofold. As an energy company, Ríos says that they wanted to be in “the energy capital of the world.” But Texas is also one of the largest sites of cattle farming on the planet. Lignium prefers to work with farms with more than 500 head to optimize harvesting the waste that becomes biomass.

With that in mind, Lignium has partnered with Southwest Regional Dairy Center in Stephenville, Texas, a little more than an hour southwest of Fort Worth, a town known as the world’s rodeo capital. The facility is associated with Texas A&M, though Guzmán says Lignium is not officially associated with the university.

Guzmán says that the company is currently hiring a team member to help Lignium figure out commercial logistics, as well as four or five other Houstonians who will help them take their product to market in the United States, and eventually around the globe. For now, he predicts that they will be able to sell to consumers in this country by early next year, if not the fourth quarter of 2023.

“We are very committed to the solution because, at the end of the day, if we do good work with the company, we are sure we can give better conditions to the cattle industry,” says Guzmán. “Then we can make a big impact on a real problem.

------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based co. closes acquisition of 50 percent stake in Texas cogeneration facility

M&A Moves

Fengate Asset Management announced the financial close on the acquisition of a 50 percent interest in Freeport Power Limited, which owns a 440-megawatt cogeneration facility in Freeport, Texas.

FPL is located near the Freeport Energy Center, which is a 260-megawatt cogeneration facility that is currently owned and managed by Fengate. The two facilities work to provide cost-effective power and steam to Dow’s Freeport site, which is the largest integrated chemical manufacturing complex in the Western Hemisphere.

“We are thrilled to have closed this acquisition, which aligns with our strategy of acquiring behind-the-meter cogeneration projects with strong industrial partners like Dow,” Greg Calhoun, managing director of Infrastructure Investments at Fengate, says in a news release.

Fengate was able to acquire interest in FPL under a strategic operating partnership with asset manager Ironclad Energy. The partnership with Ironclad was established in 2022 to acquire and operate cogeneration, district energy and other power generation projects throughout North America.

“This is our second acquisition with Fengate, and we look forward to continuing our partnership to optimize and expand the portfolio,” Christopher Fanella, president and CFO of Ironclad Energy, says in the release.

Fengate opened its first U.S. office in 2017 in Houston.

“Combined heat and power projects like FPL will continue to play an important role in the U.S. power industry – especially for hard-to-abate industrial sectors – to ensure reliability, efficiency and affordability,” adds in the release.

Houston energy leader on why the future of fuels is more than electric vehicles

guest column

Gasoline, diesel, bunker fuel, and jet fuel. Four liquid hydrocarbons that have been powering transportation for the last 100-plus years.

Gas stations, truck stops, ports, and airport fuel terminals have been built up over the last century to make transportation easy and reliable.

These conventional fuels release Greenhouse Gases (GHG) when they are used, and governments all over the world are working on plans to shift towards cleaner fuels in an effort to lower emissions and minimize the effects of climate change.

For passenger cars, it’s clear that electricity will be the cleaner fuel type, with most countries adopting electric vehicles (EVs), and in some cases, providing their citizens with incentives to make the switch.

While many articles have been written about EVs and the benefits that come along with them, they fail to look at the transportation system as a whole.

Trucks, cargo ships, and airplanes are modes of transportation that are used every day, but they don’t often get the spotlight like EVs do.

For governments to be effective in curbing transportation-related greenhouse emissions, they must consider all forms of transportation and cleaner fuel options for them as well.

43 percent of GHG emissions comes from these modes of transportation. Therefore, using electricity to reduce GHG emissions in light duty vehicles only accounts for part of the total transportation emissions equation.

The path to cleaner fuels for these transportation modes has its challenges.

According to Ed Emmett, Fellow in Energy and Transportation Policy at the Baker Institute Center for Energy Studies (CES);

  • "Airplanes cannot be realistically powered by electricity, at least not currently, and handle the same requisite freight and passenger loads"
  • "The long-haul trucking industry [...] pushed back against electrification as being impractical due to the size and weight of batteries, their limited range, and the cost of adoption"
  • "Shipowners have expressed reluctance to scrap existing bunker fueled ships for newer, more expensive ships, especially when other fueling options, e.g. biofuels and hydrocarbon derivatives-for fleets can be made available"

Finding low-cost, reliable, and environmentally sound fuels for the various segments of transportation is complex. As Emmett suggests in his latest article;

"Hovering over the transition to other fuels for almost every transportation mode is the question of dependability of supply. For the trucking industry, the truck stop industry must be able to adapt to new fuel requirements. For ocean shipping, ports must be able to meet the fuel needs of new ships. Airlines, air cargo carriers and airports need to be on the same page when it comes to aviation fuels. In other words, the adoption equation in transitions in transportation is not only a function of the availability and cost of the new technology but also a function of the cost of the full supply chain needed to support fuel production and delivery to the point of use. Going forward, the transportation industry is facing a dilemma: How are environmental concerns addressed while simultaneously maintaining operational efficiency and avoiding unnecessary upward cost shifts for moving goods and people? In answering that question, for the first time in history, modes of transportation may end up going in multiple different directions when it comes to the fuels each mode ultimately chooses."

This is why many forecasts predict that hydrocarbon demand will continue through 2050, despite ambitious aspirations of achieving net zero emissions by that year. The McKinsey "slow evolution" scenario has global liquid hydrocarbon demand in 2050 at 92mmb/d versus 103 mmb/d in 2023. With their "continued momentum" scenario, oil demand is 75 mmb/d. Proportionally, global oil demand related to GHG emissions from transportation would decline 11-27 percent. The global uptake of EVs is the primary driver of uncertainty around future oil demand. In all the McKinsey scenarios, the share of EVs in passenger cars sales is expected to be above 90 percent by 2050.

The Good News

Despite the relatively slow progress expected for reducing GHG emissions in the global transportation sector, there are solutions emerging that lower the carbon footprint tied to traditional petroleum-based fuels. Emmett highlights some of the methods under study, noting that "sustainable biofuels sourced from cooking oils, animal fats, and agriculture products, as well as hydrogen, methanol, ammonia, and various e-fuels are among the options being tested. Some ocean carriers are already ordering ships powered by liquified natural gas, bio-e-methanol, bio/e-methane, ammonia, and hydrogen. Airlines are already using sustainable aviation fuel as a supplement to basic aviation fuel. Railroads are testing hydrogen locomotives. The trucking industry is decarbonizing local delivery by using vehicles powered by electricity, compressed natural gas, and sustainable diesel. Long-haul trucking companies are considering sustainable diesel as a drop-in fuel for existing equipment, and fuel suppliers are researching new engines fueled by hydrogen and other alternative fuels."

Most of these options will require a combination of increased government incentives, along with advancements in technology and cost reductions.

McKinsey's "sustainable transformation" scenario, which considers potential shifts in government regulations as well as advancements in technology and cost, suggests there is moderate growth in alternative fuels alongside growth in EVs. Mckinsey projects;

  • EV demand could grow to over 90 percent of total passenger car sales by 2050
  • EVs to make up around 80 percent of commercial truck sales by 2050
  • In aviation, low carbon fuels such as biofuels, synfuels, hydrogen and electricity are projected to grow to 49 percent by 2050.

According to McKinsey, the combination of these alternatives along with demand changes in power and chemicals could reduce global oil demand to 60 mmb/d in 2050. The shift to cleaner fuels, for modes of transportation other than EVs, is underway but the progress and adoption will take decades to achieve according to McKinsey’s forecasts.

Looking more closely at EVs, the story may not be as dire globally as it seems to be in the West. While the U.S. appears to be losing momentum on electric vehicle adoption, China is roaring ahead. New electric car registrations in China reached 8.1 million in 2023, increasing by 35 percent relative to 2022. McKinsey’s forecasts have underestimated global EV sales in the past, with China surpassing their estimates, while the U.S. lags behind. It’s clear that China is the winner in EV adoption; could they also lead the way to adopt cleaner fuels for other modes of transport? That is something governments and the transportation industry will be watching in the years ahead.

Conclusion

While we are not on a trajectory to meet the aspirations to reduce global GHG emissions in the transportation sector, there are emerging solutions that could be adopted should governments around the world decide to put in place the incentives to get there. Moving forward, the future of transportation fuels will be shaped by a mix of innovation, government policies, and what consumers want. The focus will be on ensuring that the transportation sector remains reliable, secure, and economically robust, while also reducing GHG emissions. But, decarbonizing the transportation sector is much more than just EV's – it's a broader effort that will require continued global progress in each of the multiple transportation segments.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on October 9, 2024.

Houston company secures $10M contract to deliver subsea well decommissioning solution

big deal

Houston energy services provider Expro was awarded a contract valued at over $10 million for the provision of a well decommissioning solution.

The solution will combine subsea safety systems and surface processing design that can enable safe entry to the well and management of well fluids.

“The contract reinforces our reputation as the leading provider of subsea safety systems and surface well test equipment, including within the P&A sector,” Iain Farley, Expro’s regional vice president for Europe and Sub-Saharan Africa, says in a news release. "It demonstrates our commitment to delivering best-in-class equipment, allied with the highest standards of safety and service quality that Expro is renowned for.”

Expro will provide from its global support hub in Aberdeen, a surface fluid management package and a market-leading 7-3/8 inch large-bore subsea test tree assembly (SSTTA). This will include surface tree and controls that can provide dual barrier and disconnect capability to facilitate re-entry into the subsea wells.

Expro has been supplying its subsea safety systems and well test equipment to the construction of many of the 52 wells now being plugged and abandoned.

“Having been involved in the development phase for many of these fields, we have gained a life of well experience that will be invaluable for this P&A campaign,” Farley adds. “Our expertise and know-how will help deliver key technical and commercial benefits for the client across the project.”