The world can't keep on with what it's doing and expect to reach its goals when it comes to climate change. Radical innovations are needed at this point, writes Scott Nyquist. Photo via Getty Images

Almost 3 years ago, McKinsey published a report arguing that limiting global temperature rises to 1.5 degrees Celsius above pre-industrial levels was “technically achievable,” but that the “math is daunting.” Indeed, when the 1.5°C figure was agreed to at the 2015 Paris climate conference, the assumption was that emissions would peak before 2025, and then fall 43 percent by 2030.

Given that 2022 saw the highest emissions ever—36.8 gigatons—the math is now more daunting still: cuts would need to be greater, and faster, than envisioned in Paris. Perhaps that is why the Intergovernmental Panel on Climate Change (IPCC) noted March 20 (with “high confidence”) that it was “likely that warming will exceed 1.5°C during the 21st century.”

I agree with that gloomy assessment. Given the rate of progress so far, 1.5°C looks all but impossible. That puts me in the company of people like Bill Gates; the Economist; the Australian Academy of Science, and apparently many IPCC scientists. McKinsey has estimated that even if all countries deliver on their net zero commitments, temperatures will likely be 1.7°C higher in 2100.

In October, the UN Environment Program argued that there was “no credible pathway to 1.5°C in place” and called for “an urgent system-wide transformation” to change the trajectory. Among the changes it considers necessary: carbon taxes, land use reform, dietary changes in which individuals “consume food for environmental sustainability and carbon reduction,” investment of $4 trillion to $6 trillion a year; applying current technology to all new buildings; no new fossil fuel infrastructure. And so on.

Let’s assume that the UNEP is right. What are the chances of all this happening in the next few years? Or, indeed, any of it? President Obama’s former science adviser, Daniel Schrag, put it this way: “ Who believes that we can halve global emissions by 2030?... It’s so far from reality that it’s kind of absurd.”

Having a goal is useful, concentrating minds and organizing effort. And I think that has been the case with 1.5°C, or recent commitments to get to net zero. Targets create a sense of urgency that has led to real progress on decarbonization.

The 2020 McKinsey report set out how to get on the 1.5°C pathway, and was careful to note that this was not a description of probability or reality but “a picture of a world that could be.” Three years later, that “world that could be” looks even more remote.

Consider the United States, the world’s second-largest emitter. In 2021, 79 percent of primary energy demand (see chart) was met by fossil fuels, about the same as a decade before. Globally, the figures are similar, with renewables accounting for just 12.5 percent of consumption and low-emissions nuclear another 4 percent. Those numbers would have to basically reverse in the next decade or so to get on track. I don’t see how that can happen.

No alt text provided for this image

Credit: Energy Information Administration

But even if 1.5°C is improbable in the short term, that doesn’t mean that missing the target won’t have consequences. And it certainly doesn’t mean giving up on addressing climate change. And in fact, there are some positive trends. Many companies are developing comprehensive plans for achieving net-zero emissions and are making those plans part of their long-term strategy. Moreover, while global emissions grew 0.9 percent in 2022, that was much less than GDP growth (3.2 percent). It’s worth noting, too, that much of the increase came from switching from gas to coal in response to the Russian invasion of Ukraine; that is the kind of supply shock that can be reversed. The point is that growth and emissions no longer move in lockstep; rather the opposite. That is critical because poorer countries are never going to take serious climate action if they believe it threatens their future prosperity.

Another implication is that limiting emissions means addressing the use of fossil fuels. As noted, even with the substantial rise in the use of renewables, coal, gas, and oil are still the core of the global energy system. They cannot be wished away. Perhaps it is time to think differently—that is, making fossil fuels more emissions efficient, by using carbon capture or other technologies; cutting methane emissions; and electrifying oil and gas operations. This is not popular among many climate advocates, who would prefer to see fossil fuels “stay in the ground.” That just isn’t happening. The much likelier scenario is that they are gradually displaced. McKinsey projects peak oil demand later this decade, for example, and for gas, maybe sometime in the late 2030s. Even after the peak, though, oil and gas will still be important for decades.

Second, in the longer term, it may be possible to get back onto 1.5°C if, in addition to reducing emissions, we actually remove them from the atmosphere, in the form of “negative emissions,” such as direct air capture and bioenergy with carbon capture and storage in power and heavy industry. The IPCC itself assumed negative emissions would play a major role in reaching the 1.5°C target; in fact, because of cost and deployment problems, it’s been tiny.

Finally, as I have argued before, it’s hard to see how we limit warming even to 2°C without more nuclear power, which can provide low-emissions energy 24/7, and is the largest single source of such power right now.

None of these things is particularly popular; none get the publicity of things like a cool new electric truck or an offshore wind farm (of which two are operating now in the United States, generating enough power for about 20,000 homes; another 40 are in development). And we cannot assume fast development of offshore wind. NIMBY concerns have already derailed some high-profile projects, and are also emerging in regard to land-based wind farms.

Carbon capture, negative emissions, and nuclear will have to face NIMBY, too. But they all have the potential to move the needle on emissions. Think of the potential if fast-growing India and China, for example, were to develop an assembly line of small nuclear reactors. Of course, the economics have to make sense—something that is true for all climate-change technologies.

And as the UN points out, there needs to be progress on other issues, such as food, buildings, and finance. I don’t think we can assume that such progress will happen on a massive scale in the next few years; the actual record since Paris demonstrates the opposite. That is troubling: the IPCC notes that the risks of abrupt and damaging impacts, such as flooding and crop yields, rise “with every increment of global warming.” But it is the reality.

There is one way to get us to 1.5°C, although not in the Paris timeframe: a radical acceleration of innovation. The approaches being scaled now, such as wind, solar, and batteries, are the same ideas that were being discussed 30 years ago. We are benefiting from long-term, incremental improvements, not disruptive innovation. To move the ball down the field quickly, though, we need to complete a Hail Mary pass.

It’s a long shot. But we’re entering an era of accelerated innovation, driven by advanced computing, artificial intelligence, and machine learning that could narrow the odds. For example, could carbon nanotubes displace demand for high-emissions steel? Might it be possible to store carbon deep in the ocean? Could geo-engineering bend the curve?

I believe that, on the whole, the world is serious about climate change. I am certain that the energy transition is happening. But I don’t think we are anywhere near to being on track to hit the 1.5°C target. And I don’t see how doing more of the same will get us there.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston energy tech company breaks ground on low-cost green hydrogen pilot plant

coming soon

Houston’s Lummus Technology and Advanced Ionics have broken ground on their hydrogen pilot plant at Lummus’ R&D facility in Pasadena.

The plant will support Advanced Ionics’ cutting-edge electrolyzer technology, which aims to deliver high-efficiency hydrogen production with reduced energy requirements.

“By demonstrating Advanced Ionics’ technology at our state-of-the-art R&D facility, we are leveraging the expertise of our scientists and R&D team, plus our proven track record of developing breakthrough technologies,” Leon de Bruyn, president and CEO of Lummus, said in a news release. “This will help us accelerate commercialization of the technology and deliver scalable, cost-effective and sustainable green hydrogen solutions to our customers.”

Advanced Ionics is a Milwaukee-based low-cost green hydrogen technology provider. Its electrolyzer converts process and waste heat into green hydrogen for less than a dollar per kilogram, according to the company. The platform's users include industrial hydrogen producers looking to optimize sustainability at an affordable cost.

Lummus, a global energy technology company, will operate the Advanced Ionics electrolyzer and manage the balance of plant systems.

In 2024, Lummus and Advanced Ionics established their partnership to help advance the production of cost-effective and sustainable hydrogen technology. Lummus Venture Capital also invested an undisclosed amount into Advanced Ionics at the time.

“Our collaboration with Lummus demonstrates the power of partnerships in driving the energy transition forward,” Ignacio Bincaz, CEO of Advanced Ionics, added in the news release. “Lummus serves as a launchpad for technologies like ours, enabling us to validate performance and integration under real-world conditions. This milestone proves that green hydrogen can be practical and economically viable, and it marks another key step toward commercial deployment.”

Houston Energy Transition Initiative releases 2025 year in review

The View From HETI

The Houston Energy Transition Initiative (HETI) concludes another impactful year by reaffirming our commitment to positioning Houston as the global leader in the energy transition – delivering more energy with fewer emissions. HETI continues to be focused on advancing key regional priorities, driving economic development and talent recruitment.

It was a year of changes across the energy landscape, yet HETI continued to collaborate, convene, and deliver measurable progress. Below are some of the year’s key highlights:

Sharing Members’ Impact on Decarbonization and Emissions Reductions

HETI released a report detailing members’ low-carbon initiatives and commitments, showcasing industry momentum and long-term pathways to achieving the dual challenge of meeting growing global energy demand while reducing emissions. Major findings include more than $95 billion in low-carbon investments and 20% reduction in Scope 1 emissions since 2017 by HETI-affiliated companies. The report also recommends strategic pathways for continued emissions reductions.

Advancing CCUS at Commercial Scale

HETI publicly supported efforts to accelerate carbon capture, utilization, and storage (CCUS) efforts to commercial scale. Early in the year, HETI and the Houston CCS Alliance commissioned Texas A&M University’s Energy Institute and Mary Kay O’Connor Process Safety Center to research the operational history and safety record of CCUS in the United States. In November, the U.S. Environmental Protection Agency granted Texas authority to permit CCUS—a significant win that increases the region’s competitiveness in the global energy ecosystem.

Leadership in Resilient Power for Houston’s Growth

In June, HETI hosted its first Resilient Power: Fueling Houston’s Growing Economy summit, bringing together more than 100 business and civic leaders to discuss the role of resilient, reliable power in Houston’s economic development. Cross-sector leaders explored the impacts of rising power demand driven by industrial decarbonization and digitalization, and discussed the essential collaboration between the energy and tech sectors to strengthen long-term resilience through an “all of the above” approach. HETI also published a fact sheet on Houston’s resilient power access, affordability, and reliability as a resource for partners.

Showcasing Houston’s Leadership at CERAWeek 2025

HETI participated in CERAWeek 2025, elevating Houston’s energy leadership on the world stage. The HETI House activation in the Innovation Agora attracted more than 1,000 visitors and generated over 80 economic development leads. In addition, HETI partnered with Rice Alliance and TEX-E for the fourth annual Energy Ventures Pitch Competition at CERAWeek, bringing together students, startups and energy leaders to advance innovation and investment.

Scaling Houston’s Innovation Ecosystem

As Houston’s energy innovation ecosystem continues to grow, HETI plays an important role in shaping its future. During its second year, Houston Energy and Climate Startup Week attracted more than 3,900 attendees from local and global startups, industry leaders, and investors—further solidifying Houston’s status as the world’s leading energy innovation hub.

Strengthening Regional Competitiveness

To advance technology commercialization and support the Gulf Coast’s continued energy competitiveness, HETI hosted its second annual Gulf Coast National Labs Workshop. This year’s event convened more than 120 leaders representing six national laboratories, industry partners, academia, and government stakeholders to accelerate collaboration around the region’s greatest energy and chemical challenges.

HETI’s progress this year is significant, but the work ahead is even more critical. As we move into the new year, HETI remains steadfast in its commitment to convening industry leaders, informing policy, supporting innovation, and driving economic growth across the region. This work strengthens Houston’s core energy economy and accelerates the emerging sectors that will ensure Houston continues to lead the world in energy.

———

This article originally appeared on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Chevron CEO touts biofuels as part of its renewable energy efforts

Betting on biofuels

As Chevron Chairman and CEO Mike Wirth surveys the renewable energy landscape, he sees the most potential in biofuels.

At a recent WSJ CEO Council event, Wirth put a particular emphasis on biofuels—the most established form of renewable energy—among the mix of low-carbon energy sources. According to Biofuels International, Chevron operates nine biorefineries around the world.

Biofuels are made from fats and oils, such as canola oil, soybean oil and used cooking oil.

At Chevron’s renewable diesel plant in Geismar, Louisiana, a recent expansion boosted annual production by 278 percent — from 90 million gallons to 340 million gallons. To drive innovation in the low-carbon-fuels sector, Chevron opened a technology center this summer at its renewable energy campus in Ames, Iowa.

Across the board, Chevron has earmarked $8 billion to advance its low-carbon business by 2028.

In addition to biofuels, Chevron’s low-carbon strategy includes hydrogen, although Wirth said hydrogen “is proving to be very difficult” because “you’re fighting the laws of thermodynamics.”

Nonetheless, Chevron is heavily invested in the hydrogen market:

As for geothermal energy, Wirth said it shows “some real promise.” Chevron’s plans for this segment of the renewable energy industry include a 20-megawatt geothermal pilot project in Northern California, according to the California Community Choice Association. The project is part of an initiative that aims to eventually produce 600 megawatts of geothermal energy.

What about solar and wind power?

“We start with things where we have some reason to believe we can create shareholder value, where we’ve got skills and competency, so we didn’t go into wind or solar because we’re not a turbine manufacturer installing wind and solar,” he said in remarks reported by The Wall Street Journal.

In a September interview with The New York Times, Wirth touched on Chevron’s green energy capabilities.

“We are investing in new technologies, like hydrogen, carbon capture and storage, lithium and renewable fuels,” Wirth said. “They are growing fast but off a very small base. We need to do things that meet demand as it exists and then evolve as demand evolves.”