on the radar

Upcoming Houston conference to address biology, technology and climate change

The De Lange Conference is taking place February 9 and 10 at Rice University's Baker Institute for Public Policy. Photo by Gustavo Raskosky/Rice University

Every other year, Rice University hosts a conference that addresses "issues of great concern to society," and this year will look at the intersection of technology, biology, and climate change.

The De Lange Conference, taking place February 9 and 10 at Rice University's Baker Institute for Public Policy, is centered around the theme “Brave New Worlds: Who Decides? Research, Risk and Responsibility” this year. Chaired by Luis Campos, Baker College Chair for the History of Science, Technology and Innovation, the conference is an initiative of Rice’s faculty-led consortium Scientia Institute.

“We wanted to have a broad topic that would connect a lot of different disciplines and parts of campus,” Campos says in a news release. “Synthetic biology, the uses of data, climate change—whatever our field, job or profession, we have all heard of these things, and we all want to know more about them. So we’re bringing in scholars, scientists and artists to think about how these frontiers of scientific innovation and research relate to larger social contexts.

“Everybody is concerned with the future of their health, the future of their society, the future of the climate that they live in and the future of how their data is being used. This is a conference that weaves all those realms together with forms of artistic intervention and creative practice.”

Rice’s De Lange Conference explores future of synthetic biology, data technology and climate changewww.youtube.com

Attendees of the event can anticipate two days of discussions led by thought leaders, artistic interventions, screenings, and more from a roster of scientists, researchers, scholars, and artists. The full schedule is listed online.

The event is free to attend, but registration is required.

Trending News

A View From HETI

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Trending News