taking notes

3 things you may have missed: Houston climatetech startup closes seed, events to attend, and more

Houston energy transition folks — here's what to know to start your week. Photo via Getty Images

Editor's note: Dive headfirst into the new week with three quick things to catch up on in Houston's energy transition.

Events not to miss

Put these Houston-area energy-related events on your calendar.

Big raise: Helix Earth secures $5.6M seed led by local investor

Helix Earth's technology is estimated to save up to half of the net energy used in commercial air conditioning, reducing both emissions and costs for operators. Photo by Sergei A/Pexels

A Houston startup with clean tech originating out of NASA has secured millions in funding.

Helix Earth Technologies closed an oversubscribed $5.6 million seed funding led by Houston-based research and investment firm Veriten. Anthropocene Ventures, Semilla Capital, and others including individual investors also participated in the round.

“This investment will empower the Helix Earth team to accelerate the development and deployment of our first groundbreaking hardware technology designed to disrupt a significant portion of the commercial air conditioning market, an industry that is ready for innovation,” Rawand Rasheed, Helix Earth co-founder and CEO, says in a news release. Continue reading.

Podcast: Sujatha Kumar of Dsider on helping startups bridge the critical gap between vision and execution

Through Dsider’s techno-economic analysis platform, Sujatha Kumar is helping startups bridge the critical gap between vision and execution, ensuring they can navigate complex markets with confidence. Photo via LinkedIn

What if the future of clean energy wasn’t just about invention, but execution? For Sujatha Kumar, CEO of Dsider, success in clean tech hinges on more than groundbreaking technology—it’s about empowering founders with the tools to make their innovations viable, scalable, and economically sound.

Through Dsider’s techno-economic analysis (TEA) platform, Kumar is helping startups bridge the critical gap between vision and execution, ensuring they can navigate complex markets with confidence.

In a recent episode of the Energy Tech Startups Podcast, Kumar shared her insights on the growing importance of TEA in the hard tech space. While clean energy innovation promises transformative solutions, the challenge lies in proving both technical feasibility and economic sustainability. Kumar argues that many early-stage founders, especially in fields like carbon capture, microgrids, and renewable energy, lack the necessary financial tools to assess market fit and long-term profitability—a gap Dsider aims to fill. Read more and listen to the episode.

Trending News

A View From HETI

UH researchers have developed a thin film that could allow AI chips to run cooler and faster. Photo courtesy University of Houston.

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

---

This article originally appeared on our sister site, InnovationMap.

Trending News