guest column

Houston innovator on the impact of facade enhancement on the energy transition

Houston-based INOVUES CEO Anas Al Kassas joins the Energy Tech Startups podcast to discuss his company's energy-saving tech. Photo via inovues.com

Imagine a world where outdated building facades transform overnight into modern marvels without the chaos of construction or the burden of exorbitant costs.

In the recent podcast episode on Energy Tech Startups, Anas Al Kassas, the CEO of INOVUES, unveils a groundbreaking technology that promises just that. This isn't just about a facelift; it's about revolutionizing energy efficiency, embracing smart-class innovations, and redefining the aesthetics of urban landscapes.


The Advantages of Facade Technology

One of the key advantages Al Kassas highlighted was the ability to significantly reduce both the cost and environmental impact of upgrading building facades. Al Kassas explained that by utilizing INOVUES' technology, the existing systems can be updated and improved without the need for removing or discarding the windows. This approach not only saves on material costs but also avoids disruption during installation. Additionally, the fast installation process and lower labor costs further contribute to the overall cost-effectiveness of the solution.

The Role of Design Aesthetics in Building Upgrades

While energy efficiency is a primary driver for building upgrades, Al Kassas emphasized the importance of design aesthetics in the commercial real estate market. He explained that modernizing the appearance of older buildings, which may still perform well but suffer from outdated perceptions, can attract more tenants and make them more competitive. With INOVUES' solution, building owners have the opportunity to improve the aesthetics of their facades by incorporating the latest glass technologies, colors, and frit patterns (translucent patterns on glass). This not only enhances the building's appearance but also contributes to glare reduction and customization options for different tenants' needs.

The Potential for Rentable Facades

During the conversation, Al Kassas speculated about the potential for rentable facades powered by INOVUES' technology. Just as Apple offers an upgrade plan for its devices, this concept proposes a similar model for building owners to continually incorporate the latest technologies every few years. By avoiding upfront costs and providing immediate benefits such as lower energy bills, improved tenant satisfaction, and a more sustainable building, this rentable facade approach could revolutionize the industry and make energy-efficient upgrades more accessible for a wider range of buildings.

The Current Funding Landscape and Future Growth

INOVUES' journey in securing funding, as discussed in the podcast, sheds light on the challenges faced by energy tech startups. The CEO highlighted the importance of timing and identifying the right investors who share the vision and understand the industry landscape. Despite the difficulties, INOVUES has successfully raised capital, including participation from a multinational building technology company. The company's next goal is to secure a series A funding round to scale their operations and expand their footprint in the market.

INOVUES' technology represents a sustainable solution for upgrading building facades without the need for extensive removal or disruptions. The combination of energy efficiency, improved design aesthetics, and the potential for rentable facades showcases the versatility and value of the company's technology. As the demand for sustainable building solutions continues to grow, and regulatory changes support energy efficiency projects, INOVUES is poised to make a significant impact in the industry. By focusing on both environmental and economic benefits, they are positioning themselves as a key player in the energy tech startup landscape.

———

Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News