guest column

Houston innovator on the impact of facade enhancement on the energy transition

Houston-based INOVUES CEO Anas Al Kassas joins the Energy Tech Startups podcast to discuss his company's energy-saving tech. Photo via inovues.com

Imagine a world where outdated building facades transform overnight into modern marvels without the chaos of construction or the burden of exorbitant costs.

In the recent podcast episode on Energy Tech Startups, Anas Al Kassas, the CEO of INOVUES, unveils a groundbreaking technology that promises just that. This isn't just about a facelift; it's about revolutionizing energy efficiency, embracing smart-class innovations, and redefining the aesthetics of urban landscapes.


The Advantages of Facade Technology

One of the key advantages Al Kassas highlighted was the ability to significantly reduce both the cost and environmental impact of upgrading building facades. Al Kassas explained that by utilizing INOVUES' technology, the existing systems can be updated and improved without the need for removing or discarding the windows. This approach not only saves on material costs but also avoids disruption during installation. Additionally, the fast installation process and lower labor costs further contribute to the overall cost-effectiveness of the solution.

The Role of Design Aesthetics in Building Upgrades

While energy efficiency is a primary driver for building upgrades, Al Kassas emphasized the importance of design aesthetics in the commercial real estate market. He explained that modernizing the appearance of older buildings, which may still perform well but suffer from outdated perceptions, can attract more tenants and make them more competitive. With INOVUES' solution, building owners have the opportunity to improve the aesthetics of their facades by incorporating the latest glass technologies, colors, and frit patterns (translucent patterns on glass). This not only enhances the building's appearance but also contributes to glare reduction and customization options for different tenants' needs.

The Potential for Rentable Facades

During the conversation, Al Kassas speculated about the potential for rentable facades powered by INOVUES' technology. Just as Apple offers an upgrade plan for its devices, this concept proposes a similar model for building owners to continually incorporate the latest technologies every few years. By avoiding upfront costs and providing immediate benefits such as lower energy bills, improved tenant satisfaction, and a more sustainable building, this rentable facade approach could revolutionize the industry and make energy-efficient upgrades more accessible for a wider range of buildings.

The Current Funding Landscape and Future Growth

INOVUES' journey in securing funding, as discussed in the podcast, sheds light on the challenges faced by energy tech startups. The CEO highlighted the importance of timing and identifying the right investors who share the vision and understand the industry landscape. Despite the difficulties, INOVUES has successfully raised capital, including participation from a multinational building technology company. The company's next goal is to secure a series A funding round to scale their operations and expand their footprint in the market.

INOVUES' technology represents a sustainable solution for upgrading building facades without the need for extensive removal or disruptions. The combination of energy efficiency, improved design aesthetics, and the potential for rentable facades showcases the versatility and value of the company's technology. As the demand for sustainable building solutions continues to grow, and regulatory changes support energy efficiency projects, INOVUES is poised to make a significant impact in the industry. By focusing on both environmental and economic benefits, they are positioning themselves as a key player in the energy tech startup landscape.

———

Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.

Trending News

A View From HETI

Liangzi Deng (left) and Paul C.W. Chu of the Texas Center for Superconductivity and the Dept. of Physics at the University of Houston received funding for their work. Photo courtesy of UH

Researchers at the Department of Physics at the University of Houston and Texas Center for Superconductivity have received a second-year funding from global leader in business of invention Intellectual Ventures to continue their work on exploring superconductivity,

The project, which is led by Paul C. W. Chu, T.L.L. Temple Chair of Science, professor of physics and founding director of the TcSUH and assistant professor of physics and a new TcSUH principal investigator Liangzi Deng, has been awarded $767,000 to date.

“Working with IV gives us the freedom known for scientific pursuit and at the same time provides intellectual guidance and assistance in accord with the mission goal,” Chu says in a news release.

The researchers are working on making superconductivity easier to achieve. At room temperature and normal atmospheric pressure is where the researchers are looking to simplify superconductivity. One finding from Chu and Deng’s team is called pressure-quench protocol, or PQP.The PQP will help maintain key properties (like superconductivity) in certain materials after the high pressure needed to create them is removed.

“Intellectual Ventures funded this research because Paul Chu is one of the acknowledged thought leaders in the area of superconductivity with a multi-decade track record of scientific innovation and creativity,” Brian Holloway, vice president of IV’s Deep Science Fund and Enterprise Science Fund, adds. “The work led by Chu and Deng on pressure quenching could result in game-changing progress in the field. We are very excited about the preliminary results from the first year and we look forward to continuing this collaboration.”

The project showed early success the first year, as the research used a special system to synthesize materials under high temperatures and pressure. The second-year projects will include the investigation of pressure-induced/enhanced superconductivity in cuprates and hydrides.

“If successful, UH will once again break the record for the highest superconducting Tc at atmospheric pressure,” Deng says in the release. “Additionally, we will collaborate closely with theorists to uncover the mechanism of PQP. Our research has far-reaching implications, with the potential to extend beyond superconductors to other material systems.”

Trending News