The hub will combine advanced sorting and recycling operations to address the plastic waste challenge. Photo courtesy of LYB

Houston-based chemical company LyondellBasell has signed a land lease agreement for a new integrated plastic waste recycling hub by an existing industrial park in Knapsack, Germany.

The agreement is with YNCORIS, a German industrial service provider. The hub will combine advanced sorting and recycling operations to address the plastic waste challenge and the company hopes it will grow the circular economy.

The first phase of the project will see the construction of an advanced sorting facility, which will process mixed plastic waste that can produce feedstock for mechanical and advanced recycling, since this mixed plastic waste is not recycled and usually sent to incineration for energy recovery. The hub's initial advanced sorting facility expects to start operations in the first quarter of 2026. The large facility will cover an area equivalent to 20 soccer fields.

"The industrial park in Knapsack is the ideal location for our integrated hub as is it close to our world-scale facilities in Wesseling and will allow us to develop additional technologies for the recycling of plastic waste," Yvonne van der Laan, LyondellBasell's executive vice president of circular and low carbon solutions, says in a news release. "The integration of various technologies will allow us to build scale and offer our customers a wide range of products from recycled and renewable resources."

In April, LyondellBasell also secured 208 megawatts of renewable energy capacity from a solar park in Germany. Under the 12-year deal, LyondellBasell aim s to purchase about 210 gigawatt-hours of solar power each year from Germany-based Encavis Asset Management.

By 2030, LyondellBasell hopes to produce and market at least 2 million metric tons of recycled and renewable‑based polymers annually.

LyondellBasell bought into a joint venture, Cyclyx International, that was formed in 2020 by Spring-based energy giant ExxonMobil and Tigard, Oregon-based plastic recycling innovator Agilyx. Photo courtesy ExxonMobil

Houston energy company buys in on plastic recycling

Cyclyx secured

Dutch chemical company LyondellBasell, whose U.S. headquarters is in Houston, has purchased a 25 percent stake in a joint venture that seeks to accelerate advancements in plastic recycling.

The joint venture, Cyclyx International, was formed in 2020 by Spring-based energy giant ExxonMobil and Tigard, Oregon-based plastic recycling innovator Agilyx.

In 2022, Cyclyx announced it had inked a deal with ExxonMobil and LyondellBasell to develop a first-of-its-kind plastic waste sorting and processing plant in the Houston area. The estimated $100 million facility, set to open in 2024, is poised to annually produce 330 million pounds of plastic feedstock, which is made up of recycled materials that can be used to manufacture new plastics.

“Investing in plastic waste value chain experts such as Cyclyx, together with Agilyx and ExxonMobil, helps create the robust supply chains we all need to increase access to circular and renewable feedstocks,” Yvonne van der Laan, executive vice president of LyondellBasell, says in a news release.

In conjunction with the LyondellBasell announcement, Cyclyx says it’s expanding the licensing-only model for its recycling centers to add a “build, own, and operate” option. Cyclyx says this shift will enable it to control custom-blended feedstocks from sourcing through delivery.

Last year, Cyclyx revealed it had completed a pilot project for grocery store chain Food Lion.

At the outset of the project, plastic waste at certain Food Lion stores was collected for recycling. Cyclyx then sorted and pre-processed the waste before sending it to ExxonMobil’s recycling facility in Baytown. In Baytown, ExxonMobil used its Exxtend technology for advanced recycling to create new “virgin quality” plastics and other products.

ExxonMobil says the Baytown facility, which began operating in 2021, can process more than 80 million pounds of plastic waste per year. The company says the Exxtend technology it uses there breaks down hard-to-recycle plastic waste — such as synthetic athletic fields, bubble wrap, and motor oil bottles — that previously would have headed to landfills.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

DOE grants $13.7M tax credit to power Houston clean hydrogen project

power move

Permascand USA Inc., a subsidiary of Swedish manufacturing company Permascand, has been awarded a $13.7 million tax credit by the U.S. Department of Energy (DOE) to expand across the country, including a new clean hydrogen manufacturing facility in Houston.

The new Houston facility will manufacture high-performance electrodes from new and recycled materials.

"We are proud to receive the support of the U.S. Department of Energy within their objective for clean energy," Permascand CEO Fredrik Herlitz said in a news release. "Our mission is to provide electrochemical solutions for the global green transition … This proposed project leverages Permascand’s experience in advanced technologies and machinery and will employ a highly skilled workforce to support DOE’s initiative in lowering the levelized cost of hydrogen.”

The funding comes from the DOE’s Qualifying Advanced Energy Project Credit program, which focuses on clean energy manufacturing, recycling, industrial decarbonization and critical materials projects.

The Permascand proposal was one of 140 projects selected by the DOE with over 800 concept papers submitted last summer. The funding is part of $6 billion in tax credits in the second round of the Qualifying Advanced Energy Project Credit program that was deployed in January.

So far credits have been granted to approximately 250 projects across more than 40 states, with project investments over $44 billion dollars, according to the Department of Treasury. Read more here.

Houston researchers reach 'surprising' revelation in materials recycling efforts

keep it clean

Researchers at Rice University have published a study in the journal Carbon that demonstrates how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties.

The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

“Recycling has long been a challenge in the materials industry — metals recycling is often inefficient and energy intensive, polymers tend to lose their properties after reprocessing and carbon fibers cannot be recycled at all, only downcycled by chopping them up into short pieces,” corresponding author Matteo Pasquali, director of Rice’s Carbon Hub and the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering and Chemistry, explained in a news release. “As CNT fibers are being scaled up, we asked whether and how these new materials could be recycled in the future .... We expected that recycling would be difficult and would lead to significant loss of properties. Surprisingly, we found that carbon nanotube fibers far exceed the recyclability potential of existing engineered materials, offering a solution to a major environmental issue.”

Rice researchers used a solution-spun CNT fiber that was created by dissolving fiber-grade commercial CNTs in chlorosulfonic acid, according to Rice. Mixing the two fibers led to complete redissolution and no sign of separation of the two source materials into different liquid phases. This redissolved material was spun into a mixed-source recycled fiber that retained the same structure and alignment, which was unprecedented.

Pasquali explained in a video release that the new material has properties that overlap with and could be a replacement for carbon fibers, kevlar, steel, copper and aluminum.

“This preservation of quality means CNT fibers can be used and reused in demanding applications without compromising performance, thus extending their lifecycle and reducing the need for new raw materials,” co-first author Ivan R. Siqueira, a recent doctoral graduate in Rice’s Department of Chemical and Biomolecular Engineering, said in a news release.

Other co-authors of the paper are Rice graduate alumni Oliver Dewey, now of DexMat; Steven Williams; Cedric Ginestra, now of LyondellBasell; Yingru Song, now a postdoctoral fellow at Purdue University; Rice undergraduate alumnus Juan De La Garza, now of Axiom Space; and Geoff Wehmeyer, assistant professor of mechanical engineering.

The research is part of the broader program of the Rice-led Carbon Hub, an initiative to develop a zero-emissions future. The work was also supported by the Department of Energy’s Advanced Research Project Agency, the Air Force Office of Scientific Research and a number of other organizations.

Pasquali recently led another team of Rice researchers to land a $4.1 million grant to optimize CNT synthesis. The funds came from Rice’s Carbon Hub and The Kavli Foundation. Read more here.

.

.

.