The hub will combine advanced sorting and recycling operations to address the plastic waste challenge. Photo courtesy of LYB

Houston-based chemical company LyondellBasell has signed a land lease agreement for a new integrated plastic waste recycling hub by an existing industrial park in Knapsack, Germany.

The agreement is with YNCORIS, a German industrial service provider. The hub will combine advanced sorting and recycling operations to address the plastic waste challenge and the company hopes it will grow the circular economy.

The first phase of the project will see the construction of an advanced sorting facility, which will process mixed plastic waste that can produce feedstock for mechanical and advanced recycling, since this mixed plastic waste is not recycled and usually sent to incineration for energy recovery. The hub's initial advanced sorting facility expects to start operations in the first quarter of 2026. The large facility will cover an area equivalent to 20 soccer fields.

"The industrial park in Knapsack is the ideal location for our integrated hub as is it close to our world-scale facilities in Wesseling and will allow us to develop additional technologies for the recycling of plastic waste," Yvonne van der Laan, LyondellBasell's executive vice president of circular and low carbon solutions, says in a news release. "The integration of various technologies will allow us to build scale and offer our customers a wide range of products from recycled and renewable resources."

In April, LyondellBasell also secured 208 megawatts of renewable energy capacity from a solar park in Germany. Under the 12-year deal, LyondellBasell aim s to purchase about 210 gigawatt-hours of solar power each year from Germany-based Encavis Asset Management.

By 2030, LyondellBasell hopes to produce and market at least 2 million metric tons of recycled and renewable‑based polymers annually.

LyondellBasell bought into a joint venture, Cyclyx International, that was formed in 2020 by Spring-based energy giant ExxonMobil and Tigard, Oregon-based plastic recycling innovator Agilyx. Photo courtesy ExxonMobil

Houston energy company buys in on plastic recycling

Cyclyx secured

Dutch chemical company LyondellBasell, whose U.S. headquarters is in Houston, has purchased a 25 percent stake in a joint venture that seeks to accelerate advancements in plastic recycling.

The joint venture, Cyclyx International, was formed in 2020 by Spring-based energy giant ExxonMobil and Tigard, Oregon-based plastic recycling innovator Agilyx.

In 2022, Cyclyx announced it had inked a deal with ExxonMobil and LyondellBasell to develop a first-of-its-kind plastic waste sorting and processing plant in the Houston area. The estimated $100 million facility, set to open in 2024, is poised to annually produce 330 million pounds of plastic feedstock, which is made up of recycled materials that can be used to manufacture new plastics.

“Investing in plastic waste value chain experts such as Cyclyx, together with Agilyx and ExxonMobil, helps create the robust supply chains we all need to increase access to circular and renewable feedstocks,” Yvonne van der Laan, executive vice president of LyondellBasell, says in a news release.

In conjunction with the LyondellBasell announcement, Cyclyx says it’s expanding the licensing-only model for its recycling centers to add a “build, own, and operate” option. Cyclyx says this shift will enable it to control custom-blended feedstocks from sourcing through delivery.

Last year, Cyclyx revealed it had completed a pilot project for grocery store chain Food Lion.

At the outset of the project, plastic waste at certain Food Lion stores was collected for recycling. Cyclyx then sorted and pre-processed the waste before sending it to ExxonMobil’s recycling facility in Baytown. In Baytown, ExxonMobil used its Exxtend technology for advanced recycling to create new “virgin quality” plastics and other products.

ExxonMobil says the Baytown facility, which began operating in 2021, can process more than 80 million pounds of plastic waste per year. The company says the Exxtend technology it uses there breaks down hard-to-recycle plastic waste — such as synthetic athletic fields, bubble wrap, and motor oil bottles — that previously would have headed to landfills.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Spring-based private equity firm acquires West Texas wind farm

power deal

Spring-based private equity firm Arroyo Investors has teamed up with ONCEnergy, a Portland, Oregon-based developer of clean energy projects, to buy a 60-megawatt wind farm southeast of Amarillo.

Skyline Renewables, which acquired the site, known as the Whirlwind Energy Center, in 2018, was the seller. The purchase price wasn’t disclosed.

Whirlwind Energy Center, located in Floyd County, West Texas, comprises 26 utility-scale wind turbines. The wind farm, built in 2007, supplies power to Austin Energy.

“The acquisition reflects our focus on value-driven investments with strong counterparties, a solid operating track record, and clear relevance to markets with growing capacity needs,” Brandon Wax, a partner at Arroyo, said in a press release. “Partnering with ONCEnergy allows us to leverage deep operational expertise while expanding our investment footprint in the market.”

Arroyo focuses on energy infrastructure investments in the Americas. Its portfolio includes Spring-based Seaside LNG, which produces liquefied natural gas and LNG transportation services.

Last year, Arroyo closed an investment fund with more than $1 billion in total equity commitments.

Since its launch in 2003, Arroyo has “remained committed to investing in high-quality assets, creating value and positioning assets for exit within our expected hold period,” founding partner Chuck Jordan said in 2022.

$524M Texas Hill Country solar project powered by Hyundai kicks off

powering up

Corporate partners—including Hyundai Engineering & Construction, which maintains a Houston office—kicked off a $524 million solar power project in the Texas Hill Country on Jan. 27.

The 350-megawatt, utility-scale Lucy Solar Project is scheduled to go online in mid-2027 and represents one of the largest South Korean-led investments in U.S. renewable energy.

The solar farm, located on nearly 2,900 acres of ranchland in Concho County, will generate 926 gigawatt-hours of solar power each year. That’s enough solar power to supply electricity to roughly 65,000 homes in Texas.

Power to be produced by the hundreds of thousands of the project’s solar panels has already been sold through long-term deals to buyers such as Starbucks, Workday and Plano-based Toyota Motor North America.

The project is Hyundai Engineering & Construction’s largest solar power initiative outside Asia.

“The project is significant because it’s the first time Hyundai E&C has moved beyond its traditional focus on overseas government contracts to solidify its position in the global project financing market,” the company, which is supplying solar modules for the project, says on its website.

Aside from Hyundai Engineering & Construction, a subsidiary of automaker Hyundai, Korean and U.S. partners in the solar project include Korea Midland Power, the Korea Overseas Infrastructure & Urban Development Corp., solar panel manufacturer Topsun, investment firm EIP Asset Management, Primoris Renewable Energy and High Road Energy Marketing.

Primoris Renewable Energy is an Aurora, Colorado-based subsidiary of Dallas-based Primoris Services Corp. Another subsidiary, Primoris Energy Services, is based in Houston.

High Road is based in the Austin suburb of West Lake Hills.

“The Lucy Solar Project shows how international collaboration can deliver local economic development and clean power for Texas communities and businesses,” says a press release from the project’s partners.

Elon Musk vows to put data centers in space and run them on solar power

Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”