Syzygy Plasmonics will develop a facility, known as NovaSAF 1, to convert biogas into sustainable aviation fuel in Uruguay. Photo courtesy of Syzygy

Houston-based Syzygy Plasmonics announced plans to develop what it calls the world's first electrified facility to convert biogas into sustainable aviation fuel (SAF).

The facility, known as NovaSAF 1, will be located in Durazno, Uruguay. It is expected to produce over 350,000 gallons of SAF annually, which would be considered “a breakthrough in cost-effective, scalable clean fuel,” according to the company.

"This is more than just a SAF plant; it's a new model for biogas economics," Trevor Best, CEO of Syzygy Plasmonics, said in a news release. "We're unlocking a global asset class of underutilized biogas sites and turning them into high-value clean fuel hubs without pipelines, costly gas separation, or subsidy dependence.”

The project is backed by long-term feedstock and site agreements with one of Uruguay's largest dairy and agri-energy operations, Estancias del Lago, while the permitting and equipment sourcing are ongoing alongside front-end engineering work led by Kent.

Syzygy says the project will result in a 50 percent higher SAF yield than conventional thermal biogas reforming pathways and will utilize both methane and CO2 naturally found in biogas as feedstocks, eliminating the need for expensive CO2 separation technologies and infrastructure. Additionally, the modular facility will be designed for easy replication in biogas-rich regions.

The new facility is expected to begin commercial operations in Q1 2027 and produce SAF with at least an 80 percent reduction in carbon intensity compared to Jet A fuel. The company says that once fully commercialized the facility will produce SAF at Jet-A fuel cost parity.

“We believe NovaSAF represents one of the few viable pathways to producing SAF at jet parity and successfully decarbonizing air travel,” Best added in the release.

Syzygy Plasmonics is going to be competing in Gastech's new startup competition. Photo via Getty Images

Houston startup selected for inaugural climatetech global entrepreneur competition

ready to pitch

A global natural gas, LNG, hydrogen, low-carbon solutions, and climate technology convention is coming to Houston next month — but only one Houston startup is geared up for the event's new startup competition.

Gastech invited 20 promising companies for its inaugural Gastech Start-Up Competition, and 11 companies have signed on to participate so far. Houston-based Syzygy Plasmonics, which created and is scaling a sustainable photocatalytic reactor, is currently the only local company among the participants.

“Gastech's focus on creating a low-carbon, affordable energy future aligns perfectly with Syzygy's drive to produce low-carbon, low-cost hydrogen, liquid fuels, and syngas," Syzygy Plasmonics CEO Trevor Best says. "We can't wait to represent Houston as the only startup from the area to be included among the 11 finalists in the Gastech Climatetech Global Entrepreneur Competition.”

It's the first year Gastech, which was announced to be returning to Houston last year, is hosting the competition, which invited startups from the Gastech Hydrogen and Climatetech & AI hubs. The program will allow the participants to promote their projects, benchmark in a competitive setting, and receive critical feedback from experts.

The selected companies are innovating scalable solutions across technologies in climatetech, alternative fuels, industrial decarbonization, AI, hydrogen, and more. Each company will have five minutes to pitch and three minutes of feedback. The winner receives the Gastech 2024 Leading Start-up Trophy.

“We were very impressed by the ability of Syzygy to provide deep decarbonization technology which hit the mark on each of the requirements above – we hadn’t seen it before at Gastech and there is real potential to deliver at scale,” Simon Ford, vice president at Gastech, says.

The other selected and confirmed companies are:

  • General Galactic
  • Element One
  • Stars Technology
  • Modcon System
  • Fluid-7
  • Divigas
  • Gusty.ai
  • Omega Black
  • Kayrros
  • Mitis

The competition is in partnership with Houston Energy Transition Initiative and will take place beginning at 1:30 pm on Wednesday, September 18. Networking will follow the competition. Judges include Jane Stricker of the Houston Energy Transition Initiative, Mahdi Aladel and/or Bruce Niven of Aramco Ventures, and Daniel Palmer of Climate Investment.

Syzygy Plasmonics has tested its all-electric CO2-to-fuel production technology. Photo courtesy of Syzygy

Houston company tests ​all-electric CO2-to-fuel production technology

results are in

Houston-based clean energy company Syzygy Plasmonics has successfully tested all-electric CO2-to-fuel production technology at RTI International’s facility at North Carolina’s Research Triangle Park.

Syzygy says the technology can significantly decarbonize transportation by converting two potent greenhouse gases, carbon dioxide and methane, into low-carbon jet fuel, diesel, and gasoline.

Equinor Ventures and Sumitomo Corp. of Americas sponsored the pilot project.

“This project showcases our ability to fight climate change by converting harmful greenhouse gases into fuel,” Trevor Best, CEO of Syzygy, says in a news release.

“At scale,” he adds, “we’re talking about significantly reducing and potentially eliminating the carbon intensity of shipping, trucking, and aviation. This is a major step toward quickly and cost effectively cutting emissions from the heavy-duty transport sector.”

At commercial scale, a typical Syzygy plant will consume nearly 200,000 tons of CO2 per year, the equivalent of taking 45,000 cars off the road.

“The results of this demonstration are encouraging and represent an important milestone in our collaboration with Syzygy,” says Sameer Parvathikar, director of renewable energy and energy storage at RTI.

In addition to the CO2-to-fuel demonstration, Syzygy's Ammonia e-Cracking™ technology has completed over 2,000 hours of performance and optimization testing at its plant in Houston. Syzygy is finalizing a site and partners for a commercial CO2-to-fuel plant.

Syzygy is working to decarbonize the chemical industry, responsible for almost 20 percent of industrial CO2 emissions, by using light instead of combustion to drive chemical reactions.

Syzygy has completed more than 1,500 hours of testing of the cell to generate hydrogen from ammonia. Photo via Syzygy

Innovative Houston energy company opens orders for groundbreaking tech following successful testing

coming in hot

Houston-based Syzygy Plasmonics is charging ahead with the world’s first light-powered reactor cell for industrial chemical reactions.

Syzygy says its Rigel reactor cell has met initial performance targets and is now available to order. The cell enables a customer to produce up to five tons of low-carbon hydrogen per day.

Syzygy has completed more than 1,500 hours of testing of the cell to generate hydrogen from ammonia. Testing of the ammonia e-cracking cell began in late 2023 and is still taking place.

The company hopes to capitalize on market demand in places like Asia and Europe. Syzygy says importers of liquified natural gas (LNG) in these places are being required to seek low-carbon alternatives, such as low-carbon ammonia. Some of this ammonia will be cracked to produce hydrogen for sectors like power generation and steel production.

Syzygy’s technology harnesses energy from high-efficiency artificial lighting to e-crack ammonia, eliminating the need for combustion. When powered by renewable electricity, Rigel cell stacks can deliver hydrogen from low-carbon ammonia.

“The testing at our Houston facility is going exceptionally well,” Syzygy CEO Trevor Best says in a news release.

The company is now ready to deliver projects capable of producing five tons of hydrogen per day. By 2025, Best says, 10-ton installations should come online. A year later, Syzygy expects to graduate to 100-ton projects.

Last year, Syzygy received a major boost when Mitsubishi Heavy Industries America invested in the company. The amount of the investment wasn’t disclosed.

In 2022, Syzygy raised $76 million in series C funding in a round led by Carbon Direct Capital.

———

This article originally ran on InnovationMap.

The undisclosed amount of funding will be used to continue Syzygy's work on it commercial-scale photoreactor. Photo via Syzygy

Houston cleantech co. secures investment from Mitsubishi

money moves

A Houston-based company that's created a photocatalytic reactor that uses light instead of heat to cleanly manufacture chemicals has announced its latest investor.

Syzygy Plasmonics announced a strategic investment agreement with Mitsubishi Heavy Industries Ltd., executed through Mitsubishi Heavy Industries America Inc. The terms of the deal were not disclosed, but Syzygy reports that the funding will go toward commercialization and development of its products.

"MHIA has been making moves to establish themselves as one of the leaders in the energy transition," Syzygy CEO Trevor Best says in a news release. "Formalizing our relationship with them shows their commitment to helping scale cutting edge technology and opens up new avenues for Syzygy and MHIA to work together as we commercialize our industrial decarbonization platform."

Currently, Rigel, the commercial-scale photoreactor, is being tested in Syzygy's Pearland facility. Founded based off a breakthrough discovery out of Rice University from co-founders and professors Naomi Halas and Peter Nordlander, Syzygy closed a $76 million series C financing round last year, a $23 million series B round in 2021, and its $5.8 series A in 2019.

The funding will support advancement and commercialization of the technology and is a part of Mitsubishi Heavy Industries Group's commitment to decarbonization.

"By collaborating with and investing in partners with innovative technologies, MHI Group is working to build a hydrogen ecosystem and a CO2 ecosystem that can contribute to the realization of a decarbonized society," the company writes in a statement. "Through this investment, Mitsubishi Heavy Industries will support Syzygy's efforts to develop innovative alternative technologies that will lead to the diversification of both ecosystems."

Syzygy Plasmonics has raised a series C round of funding. Photo courtesy of Syzygy

Houston company closes $76M series C round to fuel its mission of reducing carbon emissions

MONEY + MATTER

A Houston-based company that is electrifying chemical manufacturing has closed its largest round of funding to date.

Syzygy Plasmonics closed a $76 million series C financing round led by New York-based Carbon Direct Capital. The round included participation from Aramco Ventures, Chevron Technology Ventures, LOTTE CHEMICAL, and Toyota Ventures. The company's existing investors joining the round included EVOK Innovations, The Engine, Equinor Ventures, Goose Capital, Horizons Ventures, Pan American Energy, and Sumitomo Corporation of Americas. According to a news release, Carbon Direct Capital will join Syzygy's board and serve as the series C director.

"We were very attracted to the multiple use cases for the Syzygy reactor and the lifetime-value of each Syzygy customer," says Jonathan Goldberg, Carbon Direct Capital's CEO, in the release. "Emissions from hydrogen production total more than 900 million metric tons of carbon dioxide per year. Syzygy's photocatalysis technology is a key solution to decarbonize hydrogen production as well as other critical industries."

Syzygy Plasmonics has a technology that harnesses the power of light to energize chemical reactions — rather than the traditional process that is fueled by heat. The Syzygy approach reduces feedstock waste and produces fewer emissions when powered by renewable electricity. According to the release, some series C participants have also formed commercial agreements to deploy Syzygy's technology to meet their decarbonization goals.

The investment funding raised will help the company to "further development and delivery of all-electric reactor systems that eliminate fossil-based combustion from chemical manufacturing and reduce the carbon intensity of hydrogen, methanol, and fuel," per the release.

"Our mission is to decarbonize chemical and fuel production," says Syzygy Plasmonics CEO and Co-Founder Trevor Best in the release. "Syzygy's aim is to achieve 1 gigaton of carbon emissions reductions by 2040, and the series C financing is a key milestone in building towards that goal.

"Closing this fundraising round with such strong support from financial and strategic investors and with commercial agreements in hand is a signal to the market," he continues. "Forward-thinking companies have moved beyond setting decarbonization goals to executing on them. Syzygy is unique in that we are developing low-cost, low-carbon solutions to offer across multiple industries."

Syzygy was founded based off a breakthrough discover out of Rice University from co-founders and professors Naomi Halas and Peter Nordlander, who invented high-performance photocatalysts. The company's collaborators then engineered a novel reactor that uses easy-to-find low-cost materials like glass, aluminum, and LEDs instead of high-cost metal alloys. After several field trials of the scalable, universal chemical reactor platform, Syzygy expects commercial units scheduled to ship in 2023.

"Syzygy is hyper-focused on aligning energy, technology, and sustainability," says Suman Khatiwada, CTO and co-founder of Syzygy, in the release. "The projects we are delivering are targeting zero-emissions hydrogen from green ammonia, low-emissions hydrogen from combustion-free steam methane reforming, and sustainable fuels made from carbon dioxide and methane. This technology is the future of chemical manufacturing."

Syzygy has raised a $23 million series B round last year following its $5.8 series A in 2019.

------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

NRG makes latest partnership to grow virtual power plant

VPP partners

Houston-based NRG Energy recently announced a new long-term partnership with San Francisco-based Sunrun that aims to meet Texas’ surging energy demands and accelerate the adoption of home battery storage in Texas. The partnership also aligns with NRG’s goal of developing a 1-gigawatt virtual power plant by connecting thousands of decentralized energy sources by 2035.

Through the partnership, the companies will offer Texas residents home energy solutions that pair Sunrun’s solar-plus-storage systems with optimized rate plans and smart battery programming through Reliant, NRG’s retail electricity provider. As new customers enroll, their stored energy can be aggregated and dispatched to the ERCOT grid, according to a news release.

Additionally, Sunrun and NRG will work to create customer plans that aggregate and dispatch distributed power and provide electricity to Texas’ grid during peak periods.

“Texas is growing fast, and our electricity supply must keep pace,” Brad Bentley, executive vice president and president of NRG Consumer, said in the release. “By teaming up with Sunrun, we’re unlocking a new source of dispatchable, flexible energy while giving customers the opportunity to unlock value from their homes and contribute to a more resilient grid

Participating Reliant customers will be paid for sharing their stored solar energy through the partnership. Sunrun will be compensated for aggregating the stored capacity.

“This partnership demonstrates the scale and strength of Sunrun’s storage and solar distributed power plant assets,” Sunrun CEO Mary Powell added in the release. “We are delivering critical energy infrastructure that gives Texas families affordable, resilient power and builds a reliable, flexible power plant for the grid.”

In December, Reliant also teamed up with San Francisco tech company GoodLeap to bolster residential battery participation and accelerate the growth of NRG’s virtual power plant network in Texas.

In 2024, NRG partnered with California-based Renew Home to distribute hundreds of thousands of VPP-enabled smart thermostats by 2035 to help households manage and lower their energy costs. At the time, the company reported that its 1-gigawatt VPP would be able to provide energy to 200,000 homes during peak demand.

10+ exciting energy breakthroughs made by Houston teams in 2025

Year In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy sector this year. Here are the most exciting scientific breakthroughs made by Houstonians this year that are poised to shape the future of energy:

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water. The Rice-led study centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

UH researchers make breakthrough in cutting carbon capture costs

UH carbon capture cost cutting

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants. Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team first introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process.The second breakthrough displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge.

Houston team’s discovery brings solid-state batteries closer to EV use

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape. Their work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

Houston researchers make breakthrough on electricity-generating bacteria

A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

Research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity. Research showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe. This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A study from researchers at Rice University could lead to future advances in superconductors with the potential to transform energy use. The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials. The materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance. The Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. This material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

Houston researchers make headway on developing low-cost sodium-ion batteries

Houston researchers make headway on developing low-cost sodium-ion batteries

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries. The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock. The findings demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing. The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs.

Houston researchers develop strong biomaterial that could replace plastic

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic. The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties.” Ultimately, the scientists hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth. Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

Houston researchers reach 'surprising' revelation in materials recycling efforts

A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Researchers at Rice University have demonstrated how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.