Nearly 20 Houston startups and innovators were named finalists for the 2024 Houston Innovation Awards this week. Photo via Getty Images

The Houston Innovation Awards have named its honorees for its 2024 awards event, and several clean energy innovators have made the cut.

The finalists, which were named on EnergyCapital's sister site InnovationMap this week, were decided by this year's judges after they reviewed over 130 applications. More 50 finalists will be recognized in particular for their achievements across 13 categories, which includes the 2024 Trailblazer Legacy Awards that were announced earlier this month.

All of the honorees will be recognized at the event on November 14 and the winners will be named. Registration is open online.

Representing the energy industry, the startup finalists include:

  • Amperon, an AI platform powering the smart grid of the future, was named a finalist in the Energy Transition Business category.
  • ARIXTechnologies, an integrated robotics and data analytics company that delivers inspection services through its robotics platforms, was named a finalist in the Energy Transition Business and the AI/Data Science Business categories.
  • CLS Wind, a self-erection wind turbine tower system provider for the wind energy industry, was named a finalist in the Minority-Founded Business category.
  • Corrolytics, a technology startup founded to solve microbiologically influenced corrosion problems for industrial assets, was named a finalist in the Minority-Founded Business and People's Choice: Startup of the Year categories.
  • Elementium Materials, a battery technology with liquid electrolyte solutions, was named a finalist in the Energy Transition Business category.
  • Enovate Ai, a provider of business and operational process optimization for decarbonization and energy independence, was named a finalist in the AI/Data Science Business category.
  • FluxWorks, developer and manufacturer of magnetic gears and magnetic gear-integrated motors, was named a finalist in the Deep Tech Business category.
  • Gold H2, a startup that's transforming depleted oil fields into hydrogen-producing assets utilizing existing infrastructure, was named a finalist in the Minority-Founded Business and the Deep Tech Business categories.
  • Hertha Metals, developer of a technology that cost-effectively produces steel with fewer carbon emissions, was named a finalist in the Deep Tech Business category.
  • InnoVentRenewables, a startup with proprietary continuous pyrolysis technology that converts waste tires, plastics, and biomass into valuable fuels and chemicals, was named a finalist in the Energy Transition Business and the People's Choice: Startup of the Year categories.
  • NanoTech Materials, a chemical manufacturer that integrates novel heat-control technology with thermal insulation, fireproofing, and cool roof coatings to drastically improve efficiency and safety, was named a finalist in the Scaleup of the Year category.
  • SageGeosystems, an energy company focused on developing and deploying advanced geothermal technologies to provide reliable power and sustainable energy storage solutions regardless of geography, was named a finalist in the Energy Transition Business category.
  • Square Robot, an advanced robotics company serving the energy industry and beyond by providing submersible robots for storage tank inspections, was named a finalist in the Scaleup of the Year category.
  • Syzygy Plasmonics, a company that's decarbonizing chemical production with a light-powered reactor platform that electrifies the production of hydrogen, syngas, and fuel with reliable, low-cost solutions, was named a finalist in the Scaleup of the Year category.
  • TierraClimate, a software provider that helps grid-scale batteries reduce carbon emissions, was named a finalist in the Energy Transition Business category.
  • Voyager Portal, a software platform that helps commodity traders and manufacturers in the O&G, chemicals, agriculture, mining, and project cargo sectors optimize the voyage management lifecycle, was named a finalist in the AI/Data Science Business category.

In addition to the startup finalists, two energy transition-focused organizations were recognized in the Community Champion Organization category, honoring a corporation, nonprofit, university, or other organization that plays a major role in the Houston innovation community. The two finalists in that category are:

  • Energy Tech Nexus, a new global energy and carbon tech hub focusing on hard tech solutions that provides mentor, accelerator and educational programs for entrepreneurs and underserved communities.
  • Greentown Houston, a climatetech incubator and convener for the energy transition community that provides community engagement and programming in partnership with corporations and other organizations.

Lastly, a few energy transition innovators were honored in the individual categories, including Carlos Estrada, growth partner at First Bight Ventures and head of venture acceleration at BioWell; Juliana Garaizar, founding partner of Energy Tech Nexus; and Neal Dikeman, partner at Energy Transition Ventures.

The 12-week program received a record number of applications, that spanned the campus' degree offerings. Photo courtesy of Rice University

2 sustainability-focused student startups named to Houston accelerator

ready to grow

Rice University's Liu Idea Lab for Innovation & Entrepreneurship, or Lilie, has named eight teams to the second cohort of the Lilie Summer Venture Studio, and two have sustainability as a goal.

According to Rice, the 12-week program received a record number of applications, that spanned the campus' degree offerings.

“We are thrilled to see such a high level of interest and excitement from Rice students for a high-growth venture accelerator,” Kyle Judah, executive director of Lilie, said in a statement. “The diversity and creativity in this year's applications were truly inspiring, and we’re excited to support these promising ventures with the resources and mentorship they need to hit escape velocity and create the next generation of pillar companies for Houston, Texas and the world.”

The selected teams will receive $15,000 in non-dilutive funding from the accelerator, along with access to coworking space and personalized mentorship in the Liu Idea Lab.

Coflux Purification, a patent-pending in-stream module that breaks down PFAS using a novel absorbent for chemical-free water, was named to the cohort, as was Solidec, a technology platform that extracts molecules from water and air, transforms them into pure chemicals and fuels without any carbon emissions.

Here are the rest of the teams for the 2024 Lilie Summer Venture Studio:

  • Docflow, focused on streamlining residency shift scheduling
  • JewelVision, building virtual fitting rooms for jewelry e-commerce retailers using generative AI
  • Levytation, using data science and AI to answer critical questions about sales and customers for coffee shop management
  • OnGuard, a marketplace to book off-duty police officers and security professionals
  • Roster, leverages data on athletes in the NCAA Transfer Portal to automatically send updates on players to coaches
  • Veloci, a running shoe venture that addresses common pains through shoe design

Lilie launched the Summer Venture Studio last year. According to Rice, two out of the six teams selected, Helix Earth Technologies and Tierra Climate, which both also tackle sustainability challenges, raised venture capital funds after completing the accelerator program.

Helix Earth Technologies also went on to earn the inaugural TEX-E Prize at CERAWeek in 2023.

“The track record of our Summer Venture Studio Accelerator speaks for itself, despite being early in our second year," Taylor Anne Adams, head of venture acceleration programs at the Liu Idea Lab, said in a statement. "This is the power of entrepreneurship programming that is designed by founders, for founders, that happens at the Liu Idea Lab.”

Last year, Lilie also named 11 successful business leaders with ties to Houston to its first Lilie’s Leadership Council. Each agreed to donate time and money to the university’s entrepreneurship programs.

———

This article originally ran on InnovationMap.

Tierra Climate is technology agnostic, so while the company is seeing activity in the battery space, they can also work with other types of storage. Photo via Getty Images

Houston-based energy storage fintech platform founder targets new market key to transition

ready to grow

If the energy transition is going to be successful, the energy storage space needs to be equipped to support both the increased volume of energy needed and new energies. And Emma Konet and her software company, Tierra Climate, are targeting one part of the equation: the market.

"To me, it's very clear that we need to build a lot of energy storage in order to transition the grid," Konet says on the Houston Innovators Podcast. "The problems that I saw were really on the market side of things."

Konet says she was bullish on the energy storage side of things when she was an early hire at Key Capture Energy, a private equity-backed energy storage project developer. The issue with energy storage projects, as Konet describes, is they aren't being monetized properly and, in some cases, aren't sustainable and increasing emissions.

"The product we're building is solving these problems. It's a financial product, but what it's doing is solving a market deficiency," she says. "We're sending the right signal to the battery to operate in a way that reduces emissions, and then we're paying them for it because there's a demand to decarbonize."

For over a year, Konet, as co-founder and CTO, has worked on the platform, which is essentially a marketplace for corporates to buy carbon offsets, incentifying and monetizing storage projects.

Emma Konet, co-founder and CTO of Tierra Climate, joins the Houston Innovators Podcast. Photo via LinkedIn

Tierra Climate is technology agnostic, so while the company is seeing activity in the battery space, they can also work with other types of storage — like hydrogen, pumped water, and more. Konet says her ideal customers are companies with money and interest in playing a role in the energy transition and looking to offset their scope two and three emissions.

"The ultimate vision for our company is for this to be an accessible product that has a high degree of integrity that small to very large companies can execute on, because it's a pay-per-performance mechanism that doesn't lock companies into a really large contract," she says. "It's really scalable."

This year, she says the company, which won fourth place in the 2023 Rice Business Plan Competition, is focused on securing its first big contract and fundraising for its seed round.

———

This article originally ran on InnovationMap.

Houston-based WellWorth was selected as the winner of this year’s Houston Startup Showcase. Photo via LinkedIn

Houston energy SaaS startup wins local pitch competition

no. 1

The Ion hosted its annual startup pitch competition, and one company walked away with a win.

WellWorth, a financial modeling and analysis software-as-a-service company for the upstream energy sector, won the Houston Startup Showcase + Expo and secured a $5,000 prize. The startup's technology introduces a more streamlined approach to NAV modeling or corporate financial modeling for its users.

“Having worked in investment banking, I have seen firsthand how the limitations of Excel models and a lack of bespoke tools have led to inefficient workflows in upstream Oil & Gas finance," says Samra Nawaz, CEO and Co-founder of WellWorth, in a statement. "We decided to solve this problem by building a cloud-based platform that helps energy finance leaders improve decision-making around raising, managing, and deploying capital.”

Nawaz explains how impactful the opportunity to pitch has been on WellWorth, which aims to raise funding early next year accelerate customer acquisition and product development.

“By getting involved in the Ion’s innovation ecosystem, we’ve been able to not only network with many entrepreneurs and innovators in the Houston community, but also find opportunities to scale our growth,” continues Nawaz. “We’re thrilled to have brought a few more customers onboard recently, and are working closely with them to optimize our product pipeline."

The company pitched alongside the other five finalists, which included Tierra Climate, MRG Health, BeOne Sports, Trez, and Mallard Bay. Mallard Bay, a booking platform for hunting and fishing trips, secured the people's choice award, which was decided by the crowd.

“Our flagship event, Houston Startup Showcase, not only connects startups and entrepreneurs with top business leaders but also provides them an opportunity to pitch their innovations to the technology ecosystem,” says Jan Odegard, executive director of the Ion, in a news release. “We extend our congratulations to WellWorth and the company’s innovative SaaS platform for energy industry finance teams, as well as Mallard Bay, the People’s Choice winner. These companies are exemplifying the exciting new technologies being developed in Houston today.”

In addition to the pitches, several companies showcased at the event, including Nanotech, manufacturer of thermal management materials for the built environment; last year's winner Unytag, a universal toll tag that provides drivers the ability to pass through tolls anywhere in the nation; and Softeq, provides early-stage innovation, technology business consulting, and full-stack development solutions to enterprise companies and innovative startups.

The six finalists for the sustainability category for the 2023 Houston Innovation Awards weigh in on their challenges overcome. Photos courtesy

4 biggest challenges of Houston-based sustainability startups

Houston innovation awards

Six Houston-area sustainability startups have been named finalists in the 2023 Houston Innovation Awards, but they didn't achieve this recognition — as well as see success for their businesses — without any obstacles.

The finalists were asked what their biggest challenges have been. From funding to market adoption, the sustainability companies have had to overcome major obstacles to continue to develop their businesses.

The awards program — hosted by EnergyCapital's sister site, InnovationMap, and Houston Exponential — will name its winners on November 8 at the Houston Innovation Awards. The program was established to honor the best and brightest companies and individuals from the city's innovation community. Eighteen energy startups were named as finalists across all categories, but the following responses come from the finalists in the sustainability category specifically.

    Click here to secure your tickets to see who wins.

    1. Securing a commercial pilot

    "As an early-stage clean energy developer, we struggled to convince key suppliers to work on our commercial pilot project. Suppliers were skeptical of our unproven technology and, given limited inventory from COVID, preferred to prioritize larger clients. We overcame this challenge by bringing on our top suppliers as strategic investors. With a long-term equity stake in Fervo, leading oilfield services companies were willing to provide Fervo with needed drilling rigs, frack crews, pumps, and other equipment." — Tim Latimer, founder and CEO of Fervo Energy

    2. Finding funding

    "Securing funding in Houston as a solo cleantech startup founder and an immigrant with no network. Overcome that by adopting a milestone-based fundraising approach and establishing credibility through accelerator/incubator programs." — Anas Al Kassas, CEO and founder of INOVUES

    "The biggest challenge has been finding funding. Most investors are looking towards software development companies as the capital costs are low in case of a risk. Geothermal costs are high, but it is physical technology that needs to be implemented to safety transition the energy grid to reliable, green power." — Cindy Taff, CEO of Sage Geosystems

    3. Market adoption

    "Market adoption by convincing partners and government about WHP as a solution, which is resource-intensive. Making strides by finding the correct contacts to educate." — Janice Tran, CEO and co-founder of Kanin Energy

    "We are creating a brand new financial instrument at the intersection of carbon markets and power markets, both of which are complicated and esoteric. Our biggest challenge has been the cold-start problem associated with launching a new product that has effectively no adoption. We tackled this problem by leading the Energy Storage Solutions Consortium (a group of corporates and battery developers looking for sustainability solutions in the power space), which has opened up access to customers on both sides of our marketplace. We have also leveraged our deep networks within corporate power procurement and energy storage development to talk to key decision-makers at innovative companies with aggressive climate goals to become early adopters of our products and services." — Emma Konet, CTO and co-founder of Tierra Climate

    4. Long scale timelines

    "Scaling and commercializing industrial technologies takes time. We realized this early on and designed the eXERO technology to be scalable from the onset. We developed the technology at the nexus of traditional electrolysis and conventional gas processing, taking the best of both worlds while avoiding their main pitfalls." — Claus Nussgruber, CEO of Utility Global

    At last year's awards program, Cemvita Factory's co-founders, Tara and Moji Karimi, accepted the award for the Green Impact Business category. This year, Moji Karimi served as a judge

    18 Houston energy startups named finalists for innovation awards program

    companies to watch

    The 2023 Houston Innovation Awards announced its 52 finalists — a large portion of which are promising energy transition startups.

    The awards program — hosted by EnergyCapital's sister site, InnovationMap, and Houston Exponential — will name its winners on November 8 at the Houston Innovation Awards. The program was established to honor the best and brightest companies and individuals from the city's innovation community.

    The following startups, which all have an energy transition element to their business, received a finalist position in one or two categories.

    Click here to secure your tickets to see who wins.

    • ALLY Energy, helping energy companies and climate startups find, develop, and retain great talent, scored two finalist positions — one in the Female-Owned Business category and the other in the Social Impact Business category.
    • Eden Grow Systems, next generation farming technologies, is a finalist in the People's Choice: Startup of the Year category.
    • Feelit Technologies, nanotechnology for preventive maintenance to eliminate leaks, fires and explosions, increase safety and reduce downtime, is a finalist in the Female-Owned Business category and the People's Choice: Startup of the Year category.
    • Fervo Energy, leveraging proven oil and gas drilling technology to deliver 24/7 carbon-free geothermal energy, scored two finalist positions — one in the Sustainability Business category and the other in the People's Choice: Startup of the Year category.
    • FluxWorks, making frictionless gearboxes for missions in any environment, is a finalist in the Hardtech Business category.
    • Helix Earth Technologies, decarbonizing the built environment and heavy industry, is a finalist in the Hardtech Business category.
    • INOVUES, re-energizing building facades through its non-invasive window retrofit innovations, making building smarter, greener, and healthier for a better and sustainable future, was named a finalist in the Sustainability Business category.
    • Kanin Energy, helping heavy industry monetize their waste heat and decarbonize their operations, was named a finalist in the BIPOC-Owned Business and the Sustainability Business categories.
    • Mars Materials, developing a carbon-negative pathway for carbon fiber and acrylamide production using CO2 and biomass as raw materials, is a finalist in the BIPOC-Owned Business category.
    • Molecule, an energy/commodity trading risk management software that provides users with an efficient, reliable, responsive platform for managing trade risk, is a finalist in the Digital Solutions Business category.
    • Rhythm Energy, 100 percent renewable electricity service for residential customers in Texas, is a finalist in the People's Choice: Startup of the Year category.
    • Sage Geosystems, a cost-effective geothermal baseload energy solution company, also innovating underground energy storage solutions, was named a finalist in the Sustainability Business category.
    • Solugen, decarbonizing the chemical industry, is a finalist in the Hardtech Business category.
    • Square Robot, applying robotic technology to eliminate the need to put people into dangerous enclosed spaces and eliminate taking tanks out of service, is a finalist in the Hardtech Business category.
    • Syzygy Plasmonics, a deep decarbonization company that builds chemical reactors designed to use light instead of combustion to produce valuable chemicals like hydrogen and sustainable fuels, is a finalist in the Hardtech Business category.
    • Tierra Climate, decarbonizing the power grid faster by helping grid-scale batteries monetize their environmental benefits and change their operational behavior to abate more carbon, was named a finalist in the Sustainability Business category.
    • Utility Global, a technology company converting a range of waste gases into sustainable hydrogen and syngas, was named a finalist in the Sustainability Business category.
    • Venus Aerospace, a hypersonics company on track to fly reusable hypersonic flight platforms by 2024, is a finalist in the Hardtech Business category.

    Additionally, two energy companies were named to the Corporate of the Year category, which honors corporations that supports startups and/or the Houston innovation community. Aramco Ventures and Chevron Technology Ventures are two of the four finalists in this category.

    Lastly, Jason Ethier, co-founder of Lambda Catalyzer and host of the Energy Tech Startups podcast, and Kendrick Alridge, senior manager of community at Greentown Labs, scored finalist positions in the Ecosystem Builder category, as individuals who have acted as leaders in developing Houston’s startup ecosystem.

    Click here to see the full list of finalists.

    Ad Placement 300x100
    Ad Placement 300x600

    CultureMap Emails are Awesome

    Rice research team's study keeps CO2-to-fuel devices running 50 times longer

    new findings

    In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

    The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

    “Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

    By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

    The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

    The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

    “Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

    The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

    “Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

    A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

    The case for smarter CUI inspections in the energy sector

    Guest Column

    Corrosion under insulation (CUI) accounts for roughly 60% of pipeline leaks in the U.S. oil and gas sector. Yet many operators still rely on outdated inspection methods that are slow, risky, and economically unsustainable.

    This year, widespread budget cuts and layoffs across the sector are forcing refineries to do more with less. Efficiency is no longer a goal; it’s a mandate. The challenge: how to maintain safety and reliability without overextending resources?

    Fortunately, a new generation of technologies is gaining traction in the oil and gas industry, offering operators faster, safer, and more cost-effective ways to identify and mitigate CUI.

    Hidden cost of corrosion

    Corrosion is a pervasive threat, with CUI posing the greatest risk to refinery operations. Insulation conceals damage until it becomes severe, making detection difficult and ultimately leading to failure. NACE International estimates the annual cost of corrosion in the U.S. at $276 billion.

    Compounding the issue is aging infrastructure: roughly half of the nation’s 2.6 million miles of pipeline are over 50 years old. Aging infrastructure increases the urgency and the cost of inspections.

    So, the question is: Are we at a breaking point or an inflection point? The answer depends largely on how quickly the industry can move beyond inspection methods that no longer match today's operational or economic realities.

    Legacy methods such as insulation stripping, scaffolding, and manual NDT are slow, hazardous, and offer incomplete coverage. With maintenance budgets tightening, these methods are no longer viable.

    Why traditional inspection falls short

    Without question, what worked 50 years ago no longer works today. Traditional inspection methods are slow, siloed, and dangerously incomplete.

    Insulation removal:

    • Disruptive and expensive.
    • Labor-intensive and time-consuming, with a high risk of process upsets and insulation damage.
    • Limited coverage. Often targets a small percentage of piping, leaving large areas unchecked.
    • Health risks: Exposes workers to hazardous materials such as asbestos or fiberglass.

    Rope access and scaffolding:

    • Safety hazards. Falls from height remain a leading cause of injury.
    • Restricted time and access. Weather, fatigue, and complex layouts limit coverage and effectiveness.
    • High coordination costs. Multiple contractors, complex scheduling, and oversight, which require continuous monitoring, documentation, and compliance assurance across vendors and protocols drive up costs.

    Spot checks:

    • Low detection probability. Random sampling often fails to detect localized corrosion.
    • Data gaps. Paper records and inconsistent methods hinder lifecycle asset planning.
    • Reactive, not proactive: Problems are often discovered late after damage has already occurred.

    A smarter way forward

    While traditional NDT methods for CUI like Pulsed Eddy Current (PEC) and Real-Time Radiography (RTR) remain valuable, the addition of robotic systems, sensors, and AI are transforming CUI inspection.

    Robotic systems, sensors, and AI are reshaping how CUI inspections are conducted, reducing reliance on manual labor and enabling broader, data-rich asset visibility for better planning and decision-making.

    ARIX Technologies, for example, introduced pipe-climbing robotic systems capable of full-coverage inspections of insulated pipes without the need for insulation removal. Venus, ARIX’s pipe-climbing robot, delivers full 360° CUI data across both vertical and horizontal pipe circuits — without magnets, scaffolding, or insulation removal. It captures high-resolution visuals and Pulsed Eddy Current (PEC) data simultaneously, allowing operators to review inspection video and analyze corrosion insights in one integrated workflow. This streamlines data collection, speeds up analysis, and keeps personnel out of hazardous zones — making inspections faster, safer, and far more actionable.

    These integrated technology platforms are driving measurable gains:

    • Autonomous grid scanning: Delivers structured, repeatable coverage across pipe surfaces for greater inspection consistency.
    • Integrated inspection portal: Combines PEC, RTR, and video into a unified 3D visualization, streamlining analysis across inspection teams.
    • Actionable insights: Enables more confident planning and risk forecasting through digital, shareable data—not siloed or static.

    Real-world results

    Petromax Refining adopted ARIX’s robotic inspection systems to modernize its CUI inspections, and its results were substantial and measurable:

    • Inspection time dropped from nine months to 39 days.
    • Costs were cut by 63% compared to traditional methods.
    • Scaffolding was minimized 99%, reducing hazardous risks and labor demands.
    • Data accuracy improved, supporting more innovative maintenance planning.

    Why the time is now

    Energy operators face mounting pressure from all sides: aging infrastructure, constrained budgets, rising safety risks, and growing ESG expectations.

    In the U.S., downstream operators are increasingly piloting drone and crawler solutions to automate inspection rounds in refineries, tank farms, and pipelines. Over 92% of oil and gas companies report that they are investing in AI or robotic technologies or have plans to invest soon to modernize operations.

    The tools are here. The data is here. Smarter inspection is no longer aspirational — it’s operational. The case has been made. Petromax and others are showing what’s possible. Smarter inspection is no longer a leap but a step forward.

    ---

    Tyler Flanagan is director of service & operations at Houston-based ARIX Technologies.


    Scientists warn greenhouse gas accumulation is accelerating and more extreme weather will come

    Climate Report

    Humans are on track to release so much greenhouse gas in less than three years that a key threshold for limiting global warming will be nearly unavoidable, according to a study released June 19.

    The report predicts that society will have emitted enough carbon dioxide by early 2028 that crossing an important long-term temperature boundary will be more likely than not. The scientists calculate that by that point there will be enough of the heat-trapping gas in the atmosphere to create a 50-50 chance or greater that the world will be locked in to 1.5 degrees Celsius (2.7 degrees Fahrenheit) of long-term warming since preindustrial times. That level of gas accumulation, which comes from the burning of fuels like gasoline, oil and coal, is sooner than the same group of 60 international scientists calculated in a study last year.

    “Things aren’t just getting worse. They’re getting worse faster,” said study co-author Zeke Hausfather of the tech firm Stripe and the climate monitoring group Berkeley Earth. “We’re actively moving in the wrong direction in a critical period of time that we would need to meet our most ambitious climate goals. Some reports, there’s a silver lining. I don’t think there really is one in this one.”

    That 1.5 goal, first set in the 2015 Paris agreement, has been a cornerstone of international efforts to curb worsening climate change. Scientists say crossing that limit would mean worse heat waves and droughts, bigger storms and sea-level rise that could imperil small island nations. Over the last 150 years, scientists have established a direct correlation between the release of certain levels of carbon dioxide, along with other greenhouse gases like methane, and specific increases in global temperatures.

    In Thursday's Indicators of Global Climate Change report, researchers calculated that society can spew only 143 billion more tons (130 billion metric tons) of carbon dioxide before the 1.5 limit becomes technically inevitable. The world is producing 46 billion tons (42 billion metric tons) a year, so that inevitability should hit around February 2028 because the report is measured from the start of this year, the scientists wrote. The world now stands at about 1.24 degrees Celsius (2.23 degrees Fahrenheit) of long-term warming since preindustrial times, the report said.

    Earth's energy imbalance

    The report, which was published in the journal Earth System Science Data, shows that the rate of human-caused warming per decade has increased to nearly half a degree (0.27 degrees Celsius) per decade, Hausfather said. And the imbalance between the heat Earth absorbs from the sun and the amount it radiates out to space, a key climate change signal, is accelerating, the report said.

    “It's quite a depressing picture unfortunately, where if you look across the indicators, we find that records are really being broken everywhere,” said lead author Piers Forster, director of the Priestley Centre for Climate Futures at the University of Leeds in England. “I can't conceive of a situation where we can really avoid passing 1.5 degrees of very long-term temperature change.”

    The increase in emissions from fossil-fuel burning is the main driver. But reduced particle pollution, which includes soot and smog, is another factor because those particles had a cooling effect that masked even more warming from appearing, scientists said. Changes in clouds also factor in. That all shows up in Earth’s energy imbalance, which is now 25% higher than it was just a decade or so ago, Forster said.

    Earth’s energy imbalance “is the most important measure of the amount of heat being trapped in the system,” Hausfather said.

    Earth keeps absorbing more and more heat than it releases. “It is very clearly accelerating. It’s worrisome,” he said.

    Crossing the temperature limit

    The planet temporarily passed the key 1.5 limit last year. The world hit 1.52 degrees Celsius (2.74 degrees Fahrenheit) of warming since preindustrial times for an entire year in 2024, but the Paris threshold is meant to be measured over a longer period, usually considered 20 years. Still, the globe could reach that long-term threshold in the next few years even if individual years haven't consistently hit that mark, because of how the Earth's carbon cycle works.

    That 1.5 is “a clear limit, a political limit for which countries have decided that beyond which the impact of climate change would be unacceptable to their societies,” said study co-author Joeri Rogelj, a climate scientist at Imperial College London.

    The mark is so important because once it is crossed, many small island nations could eventually disappear because of sea level rise, and scientific evidence shows that the impacts become particularly extreme beyond that level, especially hurting poor and vulnerable populations, he said. He added that efforts to curb emissions and the impacts of climate change must continue even if the 1.5 degree threshold is exceeded.

    Crossing the threshold "means increasingly more frequent and severe climate extremes of the type we are now seeing all too often in the U.S. and around the world — unprecedented heat waves, extreme hot drought, extreme rainfall events, and bigger storms,” said University of Michigan environment school dean Jonathan Overpeck, who wasn't part of the study.

    Andrew Dessler, a Texas A&M University climate scientist who wasn't part of the study, said the 1.5 goal was aspirational and not realistic, so people shouldn’t focus on that particular threshold.

    “Missing it does not mean the end of the world,” Dessler said in an email, though he agreed that “each tenth of a degree of warming will bring increasingly worse impacts.”