Texas ranked in the bottom half on WalletHub's list of the most energy-efficient states. Photo via unsplash.

Texas has room to improve when it comes to energy efficiency, recent data from WalletHub shows.

The personal finance website ranked Texas at No. 35 on the latest Most & Least Energy-Efficient States list. Texas improved by one spot on the 2025 report, after coming in at No. 36 last year.

The report measured and ranked the efficiency of auto energy and home energy consumption in the 48 U.S. mainland states based on data from the U.S. Census Bureau, National Climatic Data Center, U.S. Energy Information Administration and the U.S. Department of Transportation – Federal Highway Administration.

Texas earned an overall score of 50.60. It was ranked No. 27 for home energy efficiency and No. 41 for auto efficiency. By comparison, No. 1-ranked Vermont earned a score of 85.30, ranking No. 2 for home energy and No. 6 for out energy.

The top five overall states included:

  • No. 1 Vermont
  • No. 2 California
  • No. 3 Washington
  • No. 4 New York
  • No. 5 Massachusetts

South Dakota earned the top rank for home energy efficiency, and Massachusetts earned the top rank for energy efficiency.

“Energy efficiency doesn’t just help save the planet – it also helps save you money by lowering the amount of electricity, gas, oil or other types of energy you need to consume. While there are some steps you can take to become more energy-efficient on your own, living in the right area can give you a big boost," WalletHub analyst Chip Lupo said in the report. "For example, certain states have much better public transportation systems that minimize your need to drive, at least in big cities. Some places also have better-constructed buildings that retain heat better during the winter or stay cooler during the summer.”

According to the report, some progress is being made in increasing energy efficiency across the country. The U.S. Energy Information Administration expects 26 percent of electricity generation in 2026 will come from renewables. A number of them are being developed in the Houston area, including recent announcements like the Pleasure Island Power Collective in Port Arthur.

Still, Houston earned an abysmal ranking on WalletHub's greenest cities in the U.S. report earlier this year, coming in at No. 99 out of 100. Read more here.

This latest incident is more than a sign that Houstonians must take control of their power. Photo by Eric Turnquist

Op-Ed: To protect the Texas grid, help Texans protect themselves

guest column

On the evening of May 16, a devastating “derecho” storm howled through Houston. Nearly 800,000 customers lost power. Many were still without electricity days later, as a heat wave baked neighborhoods that couldn’t power air conditioners.

It was yet another unwelcome reminder about the precariousness of the power grid.

These outages followed repeated grid warnings, conservation calls, and near-misses last summer and the summer before, as well as the catastrophic Winter Storm Uri freeze in February 2021.

The outages also preceded the increasingly extreme weather Texas faces and staggering growth on the ERCOT grid: after growing about 1 percent a year for 20 years, the power grid covering most of Texas may need to be 78 percent bigger by 2030.

So, this latest incident is more than a sign that Houstonians must take control of their power. It also shows that more and more, the state needs you to act.

Like any other market, a power grid runs on supply and demand. The supply of Texas energy is growing, which is great. At the same time, the economy is booming, leaving Texas setting demand records almost constantly. Generators can’t always keep up, especially when power plants break down or don’t produce electricity — there’s about an 18 percent chance that Texas will face at least one grid emergency this summer.

With odds like that, it’s no wonder that more and more Texans are finding ways to live more powerfully. Many are investing in solar panels and energy storage devices like Tesla Powerwalls.

These systems let families and business owners generate electricity during the day, store it, and use it later when there’s an emergency or just when power is scarce. They protect people from high bills and blackouts; it’s no coincidence that just since last month's storm, we've seen a five-fold increase in leads, reflecting a huge growth in interest in solar power. Further, since the storm, 90 percent of new Houston-area solar customers have bought backup battery systems, compared to 50 percent in 2024 and less than 25 percent in 2023.

That pattern has repeated across the country after severe weather events.

Homeowners and business owners can also slash their bills by weatherizing houses and buildings, the way power plants did after Uri. Advanced devices that help people automatically, and voluntarily, reduce electricity use when the grid is stretched would also help.

These improvements and investments would help more than just homeowners and business owners — they’d help the entire power grid. Every kilowatt that someone doesn’t need or can generate themselves frees up power for other families and businesses across the grid. That helps Texas keep the lights on, especially if electricity demand is about to spike as dramatically as the state expects.

Texas already incentivizes conservation and generation at a large scale. For example, large users like manufacturers and crypto miners get paid by ERCOT for reducing electricity use when the grid is stretched. And just last year, the legislature passed a $10 billion program to help fund new gas power plants.

It’s past time to extend similar incentives to everyday Texans, especially when we’re increasingly called upon to help ERCOT keep the lights on.

If crypto companies get money for reducing electricity use when ERCOT asks them to, then residential and business customers deserve to get paid too. The state could help Texans invest in technologies and smart metering programs that cut bills and automatically reward people for reducing use on the hottest afternoons and coldest mornings.

More than that, the state has got to do more to reward solar customers who generate electricity and return it to the grid when demand rises. These virtual power plants will increasingly provide vital power when the state badly needs it, and consumers need to be rewarded for it. (Fortunately, the state is looking at strategies to take better advantage of virtual power plants.)

Finally, if Texas is helping big generators build gas plants, it should figure out ways to help regular Texans install solar panels and battery storage units. Such systems obviously help protect Texans from power outages, but they also fortify the ERCOT grid by reducing the demand on it.

Last month’s derecho was exactly the sort of freak occurrence that will become more common as the weather grows more extreme. The best way to protect the grid from such catastrophes is to protect individual Texas customers as well.

———

Bret Biggart is CEO of Freedom Solar Power, a Texas-based solar company.


In Texas last month, coal use dropped and solar energy soared, according to a new report. Photo via Pexels

Report: Solar tops coal in Texas for energy generation for the first time

by the numbers

For the first time in Texas, according to a recent report, solar energy generation surpassed the output by coal.

The report — from the Institute For Energy Economics and Financial Analysis — sourced the Energy Information Administration’s hourly grid monitor for March 2024. This shift in a predominantly oil and gas dominated history of Texas energy output, was due to solar power’s 3.26 million megawatt-hours to Electric Reliability Council of Texas (ERCOT) grid, compared to coal’s 2.96 million MWh.

In addition, coal’s market share fell below 10 percent to 9 percent for the first time ever, to just over 9 percent. The increase in solar energy pushed solar’s share of ERCOT generation to more than 10 percent for the month, which was also a first.

Due to its sheer size, Texas is the No.1 state for solar capacity. According to the report from SmartAsset, the Lone Star State has the most clean energy capacity at 56,405 megawatts, but continues to trail states with similar geographic characteristics in overall clean energy prevalence.

Texas only 38 percent of the state’s electricity capacity comes from clean electricity, and it has the second-largest solar capacity, which means Texas has the most means, space, and potential to accommodate cleaner electricity. Texas as a whole, ranked No. 22 on the list for states with the most clean energy in the SmartAsset report.

In Texas, generation in March 2024 was 1.17 million MWh more year-over-year, which is a 56 percent increase. ERCOT data shows that the system currently has 22,710 megawatts (MW) of operational solar capacity according to IEEFA, and is expected to expand by almost one-third by the end of 2024 with an additional 7,168 MW of capacity added. The number just considers Texas solar projects that have set aside the financing required to get onto the ERCOT grid and that have a signed interconnection agreement.

Texas burned 50.7 million tons of coal for electricity, which was 13 percent of the U.S. total in 2023 according to the EIA grid monitor. Coal's annual share of ERCOT demand ranged from 36 percent to 40 percent from 2003 through 2014. The last year percent. In 2020, coal was under 20 percent in 2020; and was less than 15 percent in 2023 supplying just 13.9 percent of the system’s total demand.

The IEEFA notes coal’s low March production is important because in recent years it has been the moderate temperatures of April and May and steady winds that have affected the usage and the market share.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

DOE taps Texas companies for $56M in Strategic Petroleum Reserve deliveries

reserve refill

Two companies with ties to the Houston area have been awarded federal contracts totaling nearly $55.8 million to supply about 1 million barrels of crude oil for the nation’s depleted Strategic Petroleum Reserve.

Houston-based Trafigura Trading will provide two-thirds of the oil, and Dallas-based Energy Transfer Crude Marketing will provide the remaining one-third. Energy Transfer, the parent company of Energy Transfer Crude Marketing, operates a 330-acre oil terminal at the Houston Ship Channel.

The U.S. Department of Energy (DOE), which awarded the contracts, said Trafigura and Energy Transfer will deliver the crude oil from Dec. 1 through Jan. 31 to the Strategic Petroleum Reserve’s Bryan Mound storage site near Freeport.

The Strategic Petroleum Reserve, the world’s largest emergency supply of crude oil, can hold up to 714 million barrels of crude oil across 61 underground salt caverns at four sites along the Gulf Coast. The reserve currently contains 410 million barrels of crude oil. During the pandemic, the Biden administration ordered a 180 million-barrel drawdown from the reserve to help combat high gas prices triggered by Russia’s war with Ukraine.

The four strategic reserve sites are connected to 24 Gulf Coast refineries, and another six refineries in Kentucky, Michigan and Ohio.

“Awarding these contracts marks another step in the important process of refilling this national security asset,” U.S. Energy Secretary Chris Wright said.

In March, Wright estimated it would take $20 billion and many years to fill the Strategic Petroleum Reserve to its maximum capacity, according to Reuters

.

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.