The U.S. National Highway Traffic Safety Administration has raised concerns about Tesla's public messaging on its "Full Self-Driving" system. Photo via tesla.com

The U.S. government's highway safety agency says Tesla is telling drivers in public statements that its vehicles can drive themselves, conflicting with owners manuals and briefings with the agency saying the electric vehicles need human supervision.

The National Highway Traffic Safety Administration is asking the company to “revisit its communications” to make sure messages are consistent with user instructions.

The request came in a May email to the company from Gregory Magno, a division chief with the agency's Office of Defects Investigation. It was attached to a letter seeking information on a probe into crashes involving Tesla's “Full Self-Driving” system in low-visibility conditions. The letter was posted Friday on the agency's website.

The agency began the investigation in October after getting reports of four crashes involving “Full Self-Driving" when Teslas encountered sun glare, fog and airborne dust. An Arizona pedestrian was killed in one of the crashes.

Critics, including Transportation Secretary Pete Buttigieg, have long accused Tesla of using deceptive names for its partially automated driving systems, including “Full Self-Driving” and “Autopilot,” both of which have been viewed by owners as fully autonomous.

The letter and email raise further questions about whether Full Self-Driving will be ready for use without human drivers on public roads, as Tesla CEO Elon Musk has predicted. Much of Tesla's stock valuation hinges on the company deploying a fleet of autonomous robotaxis.

Musk, who has promised autonomous vehicles before, said the company plans to have autonomous Models Y and 3 running without human drivers next year. Robotaxis without steering wheels would be available in 2026 starting in California and Texas, he said.

A message was sent Friday seeking comment from Tesla.

In the email, Magno writes that Tesla briefed the agency in April on an offer of a free trial of “Full Self-Driving” and emphasized that the owner's manual, user interface and a YouTube video tell humans that they have to remain vigilant and in full control of their vehicles.

But Magno cited seven posts or reposts by Tesla's account on X, the social media platform owned by Musk, that Magno said indicated that Full Self-Driving is capable of driving itself.

“Tesla's X account has reposted or endorsed postings that exhibit disengaged driver behavior,” Magno wrote. “We believe that Tesla's postings conflict with its stated messaging that the driver is to maintain continued control over the dynamic driving task."

The postings may encourage drivers to see Full Self-Driving, which now has the word “supervised” next to it in Tesla materials, to view the system as a “chauffeur or robotaxi rather than a partial automation/driver assist system that requires persistent attention and intermittent intervention by the driver,” Magno wrote.

On April 11, for instance, Tesla reposted a story about a man who used Full Self-Driving to travel 13 miles (21 kilometers) from his home to an emergency room during a heart attack just after the free trial began on April 1. A version of Full Self-Driving helped the owner "get to the hospital when he needed immediate medical attention,” the post said.

In addition, Tesla says on its website that use of Full Self-Driving and Autopilot without human supervision depends on “achieving reliability" and regulatory approval, Magno wrote. But the statement is accompanied by a video of a man driving on local roads with his hands on his knees, with a statement that, “The person in the driver's seat is only there for legal reasons. He is not doing anything. The car is driving itself,” the email said.

In the letter seeking information on driving in low-visibility conditions, Magno wrote that the investigation will focus on the system's ability to perform in low-visibility conditions caused by “relatively common traffic occurrences.”

Drivers, he wrote, may not be told by the car that they should decide where Full Self-Driving can safely operate or fully understand the capabilities of the system.

“This investigation will consider the adequacy of feedback or information the system provides to drivers to enable them to make a decision in real time when the capability of the system has been exceeded,” Magno wrote.

The letter asks Tesla to describe all visual or audio warnings that drivers get that the system “is unable to detect and respond to any reduced visibility condition.”

The agency gave Tesla until Dec. 18 to respond to the letter, but the company can ask for an extension.

That means the investigation is unlikely to be finished by the time President-elect Donald Trump takes office in January, and Trump has said he would put Musk in charge of a government efficiency commission to audit agencies and eliminate fraud. Musk spent at least $119 million in a campaign to get Trump elected, and Trump has spoken against government regulations.

Auto safety advocates fear that if Musk gains some control over NHTSA, the Full Self-Driving and other investigations into Tesla could be derailed.

Musk even floated the idea of him helping to develop national safety standards for self-driving vehicles.

“Of course the fox wants to build the henhouse,” said Michael Brooks, executive director of the Center for Auto Safety, a nonprofit watchdog group.

He added that he can't think of anyone who would agree that a business mogul should have direct involvement in regulations that affect the mogul’s companies.

“That’s a huge problem for democracy, really,” Brooks said.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown Labs adds 6 Texas clean energy startups to Houston incubator

green team

Greentown Labs announced the six startups to join its Houston community in Q2 of 2025.

The companies are among a group of 13 that joined the climatetech incubator, which is co-located in Houston and Boston, in the same time period. The companies that joined the Houston-based lab specialize in a number of clean energy applications, from long-duration energy storage systems to 3D solar towers.

The new Houston members include:

  • Encore CO2, a Louisiana-based company that converts CO2 into ethanol, acetate, ethylene and other sustainable chemicals through its innovative electrolysis technology
  • Janta Power, a Dallas-based company with proprietary 3D-solar-tower technology that deploys solar power vertically rather than flatly, increasing power and energy generation
  • Licube, an Austin-based company focused on sustainable lithium recovery from underutilized sources using its proprietary and patented electrodialysis technology
  • Newfound Materials, a Houston-based company that has developed a predictive engine for materials R&D
  • Pix Force, a Houston-based company that develops AI algorithms to inspect substations, transmission lines and photovoltaic plants using drones
  • Wattsto Energy, a Houston-based manufacturer of a long-duration-energy-storage system with a unique hybrid design that provides fast, safe, sustainable and cost-effective energy storage at the microgrid and grid levels

Seven other companies will join Greentown Boston's incubator. See the full list here.

Greentown Houston also added five startups to its local lab in Q1. Read more about the companies here.

How Planckton Data is building the sustainability label every industry will need

now streaming

There’s a reason “carbon footprint” became a buzzword. It sounds like something we should know. Something we should measure. Something that should be printed next to the calorie count on a label.

But unlike calories, a carbon footprint isn’t universal, standardized, or easy to calculate. In fact, for most companies—especially in energy and heavy industry—it’s still a black box.

That’s the problem Planckton Data is solving.

On this episode of the Energy Tech Startups Podcast, Planckton Data co-founders Robin Goswami and Sandeep Roy sit down to explain how they’re turning complex, inconsistent, and often incomplete emissions data into usable insight. Not for PR. Not for green washing. For real operational and regulatory decisions.

And they’re doing it in a way that turns sustainability from a compliance burden into a competitive advantage.

From calories to carbon: The label analogy that actually works

If you’ve ever picked up two snack bars and compared their calorie counts, you’ve made a decision based on transparency. Robin and Sandeep want that same kind of clarity for industrial products.

Whether it’s a shampoo bottle, a plastic feedstock, or a specialty chemical—there’s now consumer and regulatory pressure to know exactly how sustainable a product is. And to report it.

But that’s where the simplicity ends.

Because unlike food labels, carbon labels can’t be standardized across a single factory. They depend on where and how a product was made, what inputs were used, how far it traveled, and what method was used to calculate the data.

Even two otherwise identical chemicals—one sourced from a refinery in Texas and the other in Europe—can carry very different carbon footprints, depending on logistics, local emission factors, and energy sources.

Planckton’s solution is built to handle exactly this level of complexity.

AI that doesn’t just analyze

For most companies, supply chain emissions data is scattered, outdated, and full of gaps.

That’s where Planckton’s use of AI becomes transformative.

  • It standardizes data from multiple suppliers, geographies, and formats.
  • It uses probabilistic models to fill in the blanks when suppliers don’t provide details.
  • It applies industry-specific product category rules (PCRs) and aligns them with evolving global frameworks like ISO standards and GHG Protocol.
  • It helps companies model decarbonization pathways, not just calculate baselines.

This isn’t generative AI for show. It’s applied machine learning with a purpose: helping large industrial players move from reporting to real action.

And it’s not a side tool. For many of Planckton’s clients, it’s becoming the foundation of their sustainability strategy.

From boardrooms to smokestacks: Where the pressure is coming from

Planckton isn’t just chasing early adopters. They’re helping midstream and upstream industrial suppliers respond to pressure coming from two directions:

  1. Downstream consumer brands—especially in cosmetics, retail, and CPG—are demanding footprint data from every input supplier.
  2. Upstream regulations—especially in Europe—are introducing reporting requirements, carbon taxes, and supply chain disclosure laws.

The team gave a real-world example: a shampoo brand wants to differentiate based on lower emissions. That pressure flows up the value chain to the chemical suppliers. Who, in turn, must track data back to their own suppliers.

It’s a game of carbon traceability—and Planckton helps make it possible.

Why Planckton focused on chemicals first

With backgrounds at Infosys and McKinsey, Robin and Sandeep know how to navigate large-scale digital transformations. They also know that industry specificity matters—especially in sustainability.

So they chose to focus first on the chemicals sector—a space where:

  • Supply chains are complex and often opaque.
  • Product formulations are sensitive.
  • And pressure from cosmetics, packaging, and consumer brands is pushing for measurable, auditable impact data.

It’s a wedge into other verticals like energy, plastics, fertilizers, and industrial manufacturing—but one that’s already showing results.

Carbon accounting needs a financial system

What makes this conversation unique isn’t just the product. It’s the co-founders’ view of the ecosystem.

They see a world where sustainability reporting becomes as robust as financial reporting. Where every company knows its Scope 1, 2, and 3 emissions the way it knows revenue, gross margin, and EBITDA.

But that world doesn’t exist yet. The data infrastructure isn’t there. The standards are still in flux. And the tooling—until recently—was clunky, manual, and impossible to scale.

Planckton is building that infrastructure—starting with the industries that need it most.

Houston as a launchpad (not just a legacy hub)

Though Planckton has global ambitions, its roots in Houston matter.

The city’s legacy in energy and chemicals gives it a unique edge in understanding real-world industrial challenges. And the growing ecosystem around energy transition—investors, incubators, and founders—is helping companies like Planckton move fast.

“We thought we’d have to move to San Francisco,” Robin shares. “But the resources we needed were already here—just waiting to be activated.”

The future of sustainability is measurable—and monetizable

The takeaway from this episode is clear: measuring your carbon footprint isn’t just good PR—it’s increasingly tied to market access, regulatory approval, and bottom-line efficiency.

And the companies that embrace this shift now—using platforms like Planckton—won’t just stay compliant. They’ll gain a competitive edge.

Listen to the full conversation with Planckton Data on the Energy Tech Startups Podcast:

Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Gold H2 harvests clean hydrogen from depleted California reservoirs in first field trial

breakthrough trial

Houston climatech company Gold H2 completed its first field trial that demonstrates subsurface bio-stimulated hydrogen production, which leverages microbiology and existing infrastructure to produce clean hydrogen.

Gold H2 is a spinoff of another Houston biotech company, Cemvita.

“When we compare our tech to the rest of the stack, I think we blow the competition out of the water," Prabhdeep Singh Sekhon, CEO of Gold H2 Sekhon previously told Energy Capital.

The project represented the first-of-its-kind application of Gold H2’s proprietary biotechnology, which generates hydrogen from depleted oil reservoirs, eliminating the need for new drilling, electrolysis or energy-intensive surface facilities. The Woodlands-based ChampionX LLC served as the oilfield services provider, and the trial was conducted in an oilfield in California’s San Joaquin Basin.

According to the company, Gold H2’s technology could yield up to 250 billion kilograms of low-carbon hydrogen, which is estimated to provide enough clean power to Los Angeles for over 50 years and avoid roughly 1 billion metric tons of CO2 equivalent.

“This field trial is tangible proof. We’ve taken a climate liability and turned it into a scalable, low-cost hydrogen solution,” Sekhon said in a news release. “It’s a new blueprint for decarbonization, built for speed, affordability, and global impact.”

Highlights of the trial include:

  • First-ever demonstration of biologically stimulated hydrogen generation at commercial field scale with unprecedented results of 40 percent H2 in the gas stream.
  • Demonstrated how end-of-life oilfield liabilities can be repurposed into hydrogen-producing assets.
  • The trial achieved 400,000 ppm of hydrogen in produced gases, which, according to the company,y is an “unprecedented concentration for a huff-and-puff style operation and a strong indicator of just how robust the process can perform under real-world conditions.”
  • The field trial marked readiness for commercial deployment with targeted hydrogen production costs below $0.50/kg.

“This breakthrough isn’t just a step forward, it’s a leap toward climate impact at scale,” Jillian Evanko, CEO and president at Chart Industries Inc., Gold H2 investor and advisor, added in the release. “By turning depleted oil fields into clean hydrogen generators, Gold H2 has provided a roadmap to produce low-cost, low-carbon energy using the very infrastructure that powered the last century. This changes the game for how the world can decarbonize heavy industry, power grids, and economies, faster and more affordably than we ever thought possible.”