The 12-week program received a record number of applications, that spanned the campus' degree offerings. Photo courtesy of Rice University

Rice University's Liu Idea Lab for Innovation & Entrepreneurship, or Lilie, has named eight teams to the second cohort of the Lilie Summer Venture Studio, and two have sustainability as a goal.

According to Rice, the 12-week program received a record number of applications, that spanned the campus' degree offerings.

“We are thrilled to see such a high level of interest and excitement from Rice students for a high-growth venture accelerator,” Kyle Judah, executive director of Lilie, said in a statement. “The diversity and creativity in this year's applications were truly inspiring, and we’re excited to support these promising ventures with the resources and mentorship they need to hit escape velocity and create the next generation of pillar companies for Houston, Texas and the world.”

The selected teams will receive $15,000 in non-dilutive funding from the accelerator, along with access to coworking space and personalized mentorship in the Liu Idea Lab.

Coflux Purification, a patent-pending in-stream module that breaks down PFAS using a novel absorbent for chemical-free water, was named to the cohort, as was Solidec, a technology platform that extracts molecules from water and air, transforms them into pure chemicals and fuels without any carbon emissions.

Here are the rest of the teams for the 2024 Lilie Summer Venture Studio:

  • Docflow, focused on streamlining residency shift scheduling
  • JewelVision, building virtual fitting rooms for jewelry e-commerce retailers using generative AI
  • Levytation, using data science and AI to answer critical questions about sales and customers for coffee shop management
  • OnGuard, a marketplace to book off-duty police officers and security professionals
  • Roster, leverages data on athletes in the NCAA Transfer Portal to automatically send updates on players to coaches
  • Veloci, a running shoe venture that addresses common pains through shoe design

Lilie launched the Summer Venture Studio last year. According to Rice, two out of the six teams selected, Helix Earth Technologies and Tierra Climate, which both also tackle sustainability challenges, raised venture capital funds after completing the accelerator program.

Helix Earth Technologies also went on to earn the inaugural TEX-E Prize at CERAWeek in 2023.

“The track record of our Summer Venture Studio Accelerator speaks for itself, despite being early in our second year," Taylor Anne Adams, head of venture acceleration programs at the Liu Idea Lab, said in a statement. "This is the power of entrepreneurship programming that is designed by founders, for founders, that happens at the Liu Idea Lab.”

Last year, Lilie also named 11 successful business leaders with ties to Houston to its first Lilie’s Leadership Council. Each agreed to donate time and money to the university’s entrepreneurship programs.

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”