GE Vernova and Pattern Energy, two energy transition companies with Houston ties, are teaming up for a historic wind project. Photo via ge.com

A business to be spun off by General Electric will build hundreds of turbines for what will be the largest wind project in the Western Hemisphere, part of a massive equipment order and long-term service agreement with the global renewable-energy giant Pattern Energy.

GE Vernova, which recently became a high-level partner of Boston and Houston-based Greentown Labs, announced the agreement Tuesday, saying it is the largest onshore wind turbine order received by the company, both in quantity and in the amount of electricity that the 674 turbines will eventually generate when the SunZia Wind Project comes online in 2026.

GE Vernova will tap its factory in Pensacola, Florida, for the large order, as well as tower manufacturing operations in New Mexico, Colorado, and Texas. Overall, 15 suppliers are on board for providing the necessary parts to make each turbine.

Construction already is underway on the SunZia wind farm and an associated multibillion-dollar transmission line that will funnel power to populated markets in the western United States. Pattern Energy, which has a Houston office, just weeks ago announced that it had closed on $11 billion in financing for the projects.

Backers see SunZia — described as an energy infrastructure undertaking larger than that of the Hoover Dam — as a pivotal project. The venture has attracted significant financial capital and stands to boost the percentage of the nation's electricity that comes from renewable sources amid escalating state and federal energy mandates.

Still, some Native American tribes and environmentalists worry about the location of a 50-mile (80-kilometer) segment of the transmission line where it will pass through Arizona's San Pedro Valley. The federal government already had approved the siting, but tribal leaders said there should have been more consultation.

In December, the U.S. Energy Department reported that the private sector over the past three years has announced investments of more than $180 billion in new or expanded clean energy manufacturing projects across the nation, including spending on development of larger, higher capacity wind turbines. GE has been among the companies to take advantage of tax credits included in the federal Inflation Reduction Act.

However, after years of record growth, the industry group American Clean Power expects less land-based wind to be added in the U.S. by year’s end — about enough to power 2.7 million to 3 million homes.

While companies are taking advantage of government incentives now, it can take years to bring projects online, the industry group said.

The SunZia Wind Project will span three counties in rural New Mexico. Crews already are constructing the concrete platforms that will support the turbines, and developers expect the first turbines to rise this autumn.

Pattern Energy CEO Hunter Armistead said the project will serve as a backbone for a cleaner, more reliable grid for customers across the western U.S. The company already has signed long-term power purchase agreements with Shell Energy North America and the University of California for a portion of the electricity that will be generated.

“Construction is in full swing on SunZia, using American-made turbine components and creating thousands of good-paying new jobs — a big win for the growing clean energy economy,” Armistead said in a statement.

Vic Abate, president and CEO of the company's wind business, called the venture historic.

“This project demonstrates GE Vernova’s ability to deliver on our workhorse strategy in onshore wind — producing fewer variants in large quantities at scale to drive quality and reliability across the fleet for our customers," he said in a statement.

In all, the company has more than 55,000 turbines installed worldwide.

The company has been working with Pattern Energy for the past 18 months on site layouts that are designed to maximize the performance of the turbines in central New Mexico and to ensure the supply chain can keep up with manufacturing demands.

GE Vernova consultants also have been working on interconnection with the transmission line, and the company's financial arm provided a tax equity loan commitment that helped to solidify financing for the project.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”