John Berger, CEO of Houston-based Sunnova, explains the importance of energy independence and solar's role in achieving it. Courtesy of Sunnova

Following extreme temperatures and increasing grid instability this summer, CEO and Chairman of the board of residential solar power service company Sunnova Energy Corp., John Berger, is encouraging individuals to take charge of their energy needs.

Berger founded the Houston-grown company back in 2012, before solar energy was seen as a hip, clean power source. Now, Sunnova (NYSE: NOVA) is a leader in residential solar installations.

In a discussion with EnergyCapital Berger broke down misconceptions about solar power, predicted the rise of the home as a power station, and highlighted the importance of energy independence.

EnergyCapital: In the wake of a record breaking heat wave, how do you anticipate renewables being incorporated into the market as demand response soars?

John Berger: It's a rethinking of the entire system. What goes with that is let's rethink our regulatory structure. In this regard, I'm not talking about renewable energy versus fossil fuel. I'm talking about enabling and empowering the consumer and enabling and empowering the individual, whether that's a homeowner, a business owner, or apartment dweller. We don't do that in this country. We don't do it, outside, maybe Houston, Dallas, and a couple of other small markets. That's inhibiting the transition greatly. The monopolies want higher prices, because the more money they spend, the more money they make. They are not embracing change. They are not embracing technologies. They're not embracing demand response. Because that limits their revenue. So, we should recognize that that's the system. We shouldn't expect a different outcome when we've given us some incentive structure that: spend more money, don't change and don't adopt new technologies.

We need to change the entire energy system because technologies like solar, storage, software, and hardware exist and need to be adopted. We need to have the right regulatory system to allow consumers to adopt them. We need to have the right price, so that consumers can adopt these technologies at a pace that's far quicker than what we're seeing now so that they can ultimately address climate change.

As soon as we unleash the individual and empower the individual — powering energy independence is our tagline — we will solve the ultimate risk to humanity that is climate change a lot faster.

EC: Though solar is rising in popularity, are there any misconceptions about solar power in relation to residential installations that have persisted?

JB: I think the bigger one, whether it’s on a home or in a field, is that somehow since solar is intermittent, it's not reliable. It is intermittent to some degree, but — if you've ever run a utility system — coal is unreliable, gas fired power is unreliable, nuclear is even unreliable. We saw that in the winter storm Uri down in Texas. The gas wellheads froze off because they weren't prepared for the freeze. Were the wind turbines prepared for the freeze? No, they weren't either. The one source that performed better was solar. But you don't see that in a lot of the commentary because it didn't fit the political agenda that some have.

The question is, can you put enough of both on the system or on the home so that you can carry through whether it's a winter storm day or a heatwave in the summer? The misconception that solar will always be intermittent is the constant problem that we face. What are you going to do when the wind doesn't blow and the sun doesn't shine? My response: have you ever heard of a battery? We’ve got to get over that hurdle. Frankly, it's just an excuse and at best an uneducated excuse. We need to get over that and move on, and then figure out how we can best adopt the technologies of solar and storage that are plummeting in price, through empowering the individual.

EC: Sunnova is expanding into virtual power plants, can you discuss what that means and how they might impact grid stability?

JB: Virtual power plants, or grid services, or aggregation services — we call them energy services periods. There's a lot of different names for the same thing. It's basically taking solar storage software demand technologies and incorporating them into a centralized part of what we consider the grid — even though there's not a grid in the United States. The grid, as the common person understands it to be, is actually a haphazard collection of wires and centralized generation that was just put together over the last 130 years. There was not a master plan. You cannot physically move power from Houston to New York, for instance. You haven't ever been able to do that. We're trying to have that fill in of the small solar, the storage, the software, the demand side. We're saying each home, through this Sunnova adaptive platform with our sentient software connecting all these folks together, is likely to have some excess power that they can put onto a utility system or a regional system, so that the neighbor next to him can have that excess power if that neighbor needs it. It's a part of being a part of the Sunnova Club, that we can offer that value to you. That value may be that you get that extra power that you have to pay for where the value is the price in the wholesale market, or it could be that you get paid for that extra value that you happen to produce, through our adaptive platform. So it's a way of connecting homes together so that we optimize the solar and batteries that are on the other side of the meter or on the homes on the businesses. That's a way that you can squeeze more out of that investment that you made or that solar service that you have with us.

EC: As the cost of equipment for renewable energy systems, like EV charging stations and solar roof installations, decreases, is it possible to see a transformation of the home into a power station?

JB: I would go even further and say the home is the gas station now. That's what's already happened. It's fascinating if you really step back and think about it — the electric vehicle is becoming more popular, not necessarily because it addresses climate change, but because it's cool. And because it's enabled by software, AI, and a lot of the other things that make our experience in that car different. I think a lot of people now see and understand that. The other side of that is well, why can't that happen to your house as well? Like there's a lot of automation that should be happening in the house. There's a lot of software and hardware that's going in the house with the entertainment systems and all this other stuff.

You should reimagine how your house is powered and how it uses power. There's a lot of other things that you should be able to do in your house and it's more advanced than just flipping the light switches on and off and turning air conditioners on whether you're there or not.

We waste an enormous amount of energy in the United States. It's estimated that we literally burn over twice the amount of energy that we need and so therefore we're wasting over 50 percent of our energy usage. I mean, just think about the carbon release and the financial destruction that causes. We can do a lot better today with the technology. These technologies are available today and increasingly becoming more inexpensive.

EC: You describe Sunnova as “powering energy independence” — what do you mean by that and why is energy independence important?

JB: I think independence in your life just period is important. You want to have the ability to choose what you want to do in life. It's natural, especially Americans, to say, "I can choose anything I want to do. I can choose where I want to eat tonight. I can choose what car I buy." But for some strange reason, you can't choose your power provider in this country.

That's like if AT&T came to you on cellular and said, "We're going to actually triple your bill today. The regulator already signed off on it. We're gonna give you the flip phone back and take away Apple because Apple didn't agree to our terms. And you're going to like it." That's what we get from the electric industry. It's what we always get. That's unacceptable. We need to open things up to choice and Sunnova provides that choice to the consumers.

We increasingly are taking more technologies on, like load management, storage, more software with our sentient software, and we're coming in and saying, "Look, regardless of manufacturer, we're putting that together. Whatever way you want to fund that equipment, that service that you're procuring, that's fine with us you want to do cash fine, we'll do a loan fine." We offer that lease PPA, but that financing isn't enabled. But then we wrap our service together regardless of how you choose to fund it, which is different from anybody else. We say we're going to be there within 24 hours to fix that problem for most of your issues, so that means we're going to keep that power flowing. That's all it means. It's really that simple. When we do that we can come in and say you're going to be a part of the Sunnova adaptive energy platform. Basically, you're going to be able to get more value, a lower bill, if you're able to sell some of that power you don't need on that particular hot day to your neighbor through Sunnova. We’ll handle everything so you don't have to do anything. Or we can give you some additional power that you may not know you need to charge a car up or something like that and the neighbor will provide it through the Sunnova adaptive platform. So it's about how we rethink the entire energy business.

We're putting it in the hands of the individual to make the decision about what they want, you know, going over that point about reliability, if you work from home, you have a high demand for reliability. You have a higher willingness to pay for higher reliability versus somebody that has to go to work every single day of the week. They may not have that same desire, and they probably don't want to have that level of reliability. You should be able to choose. The utility just decides, the monopoly decides who gets served well and who doesn't. There's no consumer coming in that says I have a higher demand. So what do people do? They'll get dirty generators. One of the biggest industry growth periods in the entire economy is backup generators that burn diesel and burn natural gas. Again, we're taking an industrial age system with an archaic, communistic approach with economics and having bureaucrats make the decision, so we're getting suboptimal outcomes all the way to suboptimal fighting climate change. If we just empower the individual they'd say, “Well, why don't we just put more solar panels on and put more batteries and manage the load better when I bought the electric vehicle?” Those are the kinds of solutions that can be crafted individually for each consumer and that's what we do here at Sunnova.

EC: As a long-time Houstonian, how do you envision Houston’s role in leading the energy transition?

JB: I think Houston has a key role. Houston is the most diverse city in the United States. It is that diversity that's given a lot of strength to Sunnova over the years. Our quality of life is really high. All that means this is a fantastic place to build and create the new global energy industry. We understand oil and gas very well. The bigger oil and gas firms in the world are headquartered here and that's fantastic. They’ll be a part of the solution, I would hope. But if you look at innovation and transformation in industry, there's about a 100 percent hit ratio that the incumbents actually don't lead the change, and in many cases don't make it through the change. And so what we have to do is recognize that new leaders, new companies like Sunnova need to be formed and grown up here. Take advantage of the great quality of life, the low cost structure, the diversity of its people and its communities, and really lead the world and transform the energy industry.

I'm absolutely convinced that the Texan way of doing things, the Houston way of doing things, is a key part of that and demonstrating leadership. We certainly will do our part to help lead Houston forward to be the lead dog if you will, on the transformation of the global energy business.

— — —

This conversation has been edited for brevity and clarity.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown Labs adds 6 Texas clean energy startups to Houston incubator

green team

Greentown Labs announced the six startups to join its Houston community in Q2 of 2025.

The companies are among a group of 13 that joined the climatetech incubator, which is co-located in Houston and Boston, in the same time period. The companies that joined the Houston-based lab specialize in a number of clean energy applications, from long-duration energy storage systems to 3D solar towers.

The new Houston members include:

  • Encore CO2, a Louisiana-based company that converts CO2 into ethanol, acetate, ethylene and other sustainable chemicals through its innovative electrolysis technology
  • Janta Power, a Dallas-based company with proprietary 3D-solar-tower technology that deploys solar power vertically rather than flatly, increasing power and energy generation
  • Licube, an Austin-based company focused on sustainable lithium recovery from underutilized sources using its proprietary and patented electrodialysis technology
  • Newfound Materials, a Houston-based company that has developed a predictive engine for materials R&D
  • Pix Force, a Houston-based company that develops AI algorithms to inspect substations, transmission lines and photovoltaic plants using drones
  • Wattsto Energy, a Houston-based manufacturer of a long-duration-energy-storage system with a unique hybrid design that provides fast, safe, sustainable and cost-effective energy storage at the microgrid and grid levels

Seven other companies will join Greentown Boston's incubator. See the full list here.

Greentown Houston also added five startups to its local lab in Q1. Read more about the companies here.

How Planckton Data is building the sustainability label every industry will need

now streaming

There’s a reason “carbon footprint” became a buzzword. It sounds like something we should know. Something we should measure. Something that should be printed next to the calorie count on a label.

But unlike calories, a carbon footprint isn’t universal, standardized, or easy to calculate. In fact, for most companies—especially in energy and heavy industry—it’s still a black box.

That’s the problem Planckton Data is solving.

On this episode of the Energy Tech Startups Podcast, Planckton Data co-founders Robin Goswami and Sandeep Roy sit down to explain how they’re turning complex, inconsistent, and often incomplete emissions data into usable insight. Not for PR. Not for green washing. For real operational and regulatory decisions.

And they’re doing it in a way that turns sustainability from a compliance burden into a competitive advantage.

From calories to carbon: The label analogy that actually works

If you’ve ever picked up two snack bars and compared their calorie counts, you’ve made a decision based on transparency. Robin and Sandeep want that same kind of clarity for industrial products.

Whether it’s a shampoo bottle, a plastic feedstock, or a specialty chemical—there’s now consumer and regulatory pressure to know exactly how sustainable a product is. And to report it.

But that’s where the simplicity ends.

Because unlike food labels, carbon labels can’t be standardized across a single factory. They depend on where and how a product was made, what inputs were used, how far it traveled, and what method was used to calculate the data.

Even two otherwise identical chemicals—one sourced from a refinery in Texas and the other in Europe—can carry very different carbon footprints, depending on logistics, local emission factors, and energy sources.

Planckton’s solution is built to handle exactly this level of complexity.

AI that doesn’t just analyze

For most companies, supply chain emissions data is scattered, outdated, and full of gaps.

That’s where Planckton’s use of AI becomes transformative.

  • It standardizes data from multiple suppliers, geographies, and formats.
  • It uses probabilistic models to fill in the blanks when suppliers don’t provide details.
  • It applies industry-specific product category rules (PCRs) and aligns them with evolving global frameworks like ISO standards and GHG Protocol.
  • It helps companies model decarbonization pathways, not just calculate baselines.

This isn’t generative AI for show. It’s applied machine learning with a purpose: helping large industrial players move from reporting to real action.

And it’s not a side tool. For many of Planckton’s clients, it’s becoming the foundation of their sustainability strategy.

From boardrooms to smokestacks: Where the pressure is coming from

Planckton isn’t just chasing early adopters. They’re helping midstream and upstream industrial suppliers respond to pressure coming from two directions:

  1. Downstream consumer brands—especially in cosmetics, retail, and CPG—are demanding footprint data from every input supplier.
  2. Upstream regulations—especially in Europe—are introducing reporting requirements, carbon taxes, and supply chain disclosure laws.

The team gave a real-world example: a shampoo brand wants to differentiate based on lower emissions. That pressure flows up the value chain to the chemical suppliers. Who, in turn, must track data back to their own suppliers.

It’s a game of carbon traceability—and Planckton helps make it possible.

Why Planckton focused on chemicals first

With backgrounds at Infosys and McKinsey, Robin and Sandeep know how to navigate large-scale digital transformations. They also know that industry specificity matters—especially in sustainability.

So they chose to focus first on the chemicals sector—a space where:

  • Supply chains are complex and often opaque.
  • Product formulations are sensitive.
  • And pressure from cosmetics, packaging, and consumer brands is pushing for measurable, auditable impact data.

It’s a wedge into other verticals like energy, plastics, fertilizers, and industrial manufacturing—but one that’s already showing results.

Carbon accounting needs a financial system

What makes this conversation unique isn’t just the product. It’s the co-founders’ view of the ecosystem.

They see a world where sustainability reporting becomes as robust as financial reporting. Where every company knows its Scope 1, 2, and 3 emissions the way it knows revenue, gross margin, and EBITDA.

But that world doesn’t exist yet. The data infrastructure isn’t there. The standards are still in flux. And the tooling—until recently—was clunky, manual, and impossible to scale.

Planckton is building that infrastructure—starting with the industries that need it most.

Houston as a launchpad (not just a legacy hub)

Though Planckton has global ambitions, its roots in Houston matter.

The city’s legacy in energy and chemicals gives it a unique edge in understanding real-world industrial challenges. And the growing ecosystem around energy transition—investors, incubators, and founders—is helping companies like Planckton move fast.

“We thought we’d have to move to San Francisco,” Robin shares. “But the resources we needed were already here—just waiting to be activated.”

The future of sustainability is measurable—and monetizable

The takeaway from this episode is clear: measuring your carbon footprint isn’t just good PR—it’s increasingly tied to market access, regulatory approval, and bottom-line efficiency.

And the companies that embrace this shift now—using platforms like Planckton—won’t just stay compliant. They’ll gain a competitive edge.

Listen to the full conversation with Planckton Data on the Energy Tech Startups Podcast:

Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Gold H2 harvests clean hydrogen from depleted California reservoirs in first field trial

breakthrough trial

Houston climatech company Gold H2 completed its first field trial that demonstrates subsurface bio-stimulated hydrogen production, which leverages microbiology and existing infrastructure to produce clean hydrogen.

Gold H2 is a spinoff of another Houston biotech company, Cemvita.

“When we compare our tech to the rest of the stack, I think we blow the competition out of the water," Prabhdeep Singh Sekhon, CEO of Gold H2 Sekhon previously told Energy Capital.

The project represented the first-of-its-kind application of Gold H2’s proprietary biotechnology, which generates hydrogen from depleted oil reservoirs, eliminating the need for new drilling, electrolysis or energy-intensive surface facilities. The Woodlands-based ChampionX LLC served as the oilfield services provider, and the trial was conducted in an oilfield in California’s San Joaquin Basin.

According to the company, Gold H2’s technology could yield up to 250 billion kilograms of low-carbon hydrogen, which is estimated to provide enough clean power to Los Angeles for over 50 years and avoid roughly 1 billion metric tons of CO2 equivalent.

“This field trial is tangible proof. We’ve taken a climate liability and turned it into a scalable, low-cost hydrogen solution,” Sekhon said in a news release. “It’s a new blueprint for decarbonization, built for speed, affordability, and global impact.”

Highlights of the trial include:

  • First-ever demonstration of biologically stimulated hydrogen generation at commercial field scale with unprecedented results of 40 percent H2 in the gas stream.
  • Demonstrated how end-of-life oilfield liabilities can be repurposed into hydrogen-producing assets.
  • The trial achieved 400,000 ppm of hydrogen in produced gases, which, according to the company,y is an “unprecedented concentration for a huff-and-puff style operation and a strong indicator of just how robust the process can perform under real-world conditions.”
  • The field trial marked readiness for commercial deployment with targeted hydrogen production costs below $0.50/kg.

“This breakthrough isn’t just a step forward, it’s a leap toward climate impact at scale,” Jillian Evanko, CEO and president at Chart Industries Inc., Gold H2 investor and advisor, added in the release. “By turning depleted oil fields into clean hydrogen generators, Gold H2 has provided a roadmap to produce low-cost, low-carbon energy using the very infrastructure that powered the last century. This changes the game for how the world can decarbonize heavy industry, power grids, and economies, faster and more affordably than we ever thought possible.”