Syzygy Plasmonics will develop a facility, known as NovaSAF 1, to convert biogas into sustainable aviation fuel in Uruguay. Photo courtesy of Syzygy

Houston-based Syzygy Plasmonics announced plans to develop what it calls the world's first electrified facility to convert biogas into sustainable aviation fuel (SAF).

The facility, known as NovaSAF 1, will be located in Durazno, Uruguay. It is expected to produce over 350,000 gallons of SAF annually, which would be considered “a breakthrough in cost-effective, scalable clean fuel,” according to the company.

"This is more than just a SAF plant; it's a new model for biogas economics," Trevor Best, CEO of Syzygy Plasmonics, said in a news release. "We're unlocking a global asset class of underutilized biogas sites and turning them into high-value clean fuel hubs without pipelines, costly gas separation, or subsidy dependence.”

The project is backed by long-term feedstock and site agreements with one of Uruguay's largest dairy and agri-energy operations, Estancias del Lago, while the permitting and equipment sourcing are ongoing alongside front-end engineering work led by Kent.

Syzygy says the project will result in a 50 percent higher SAF yield than conventional thermal biogas reforming pathways and will utilize both methane and CO2 naturally found in biogas as feedstocks, eliminating the need for expensive CO2 separation technologies and infrastructure. Additionally, the modular facility will be designed for easy replication in biogas-rich regions.

The new facility is expected to begin commercial operations in Q1 2027 and produce SAF with at least an 80 percent reduction in carbon intensity compared to Jet A fuel. The company says that once fully commercialized the facility will produce SAF at Jet-A fuel cost parity.

“We believe NovaSAF represents one of the few viable pathways to producing SAF at jet parity and successfully decarbonizing air travel,” Best added in the release.

Pathway Energy has announced a major sustainable aviation fuel project in Port Arthur, Texas. Rendering courtesy of Pathway Energy

Houston company's $2B carbon-negative fuel project to rise in Southeast Texas

eyes on SAF

Houston developer of ultra carbon-negative fuels projects Pathway Energy announced a series of commercial-scale sustainable aviation fuel (SAF) facilities with the first being based in Port Arthur, Texas.

The project, estimated to be valued at $2 billion, will be one of the largest decarbonization projects in the world.

Pathway plans to bring commercial SAF to market with its years of experience in waste and biomass conversion processes and technologies that include biomass gasification, Fischer-Tropsch, biomass power generation, and complex biorefinery and industrial processes. Pathway will be working with companies like Sumitomo SHI FW, who will supply the project with gasification process technology packages and power production. Pathway Energy also announced a strategic partnership with Drax Global, which is a biomass feedstock provider.

"We are happy to debut with the best technology and industrial partners in the industry on a market opportunity with global significance," Steve Roberts, CEO of Pathway Energy, says in a news release. "With the ultra negative carbon intensity achieved through our process, Pathway Energy is poised to lead a global market for ultra negative fuels, driving large scale emission reductions across the aviation sector."

In the Port Arthur project, Pathway plans to leverage sustainable biomass feedstock and access to geological storage to sequester carbon and to produce its ultra carbon-negative SAF. The site location already is equipped with industrial scale import and export logistics including established truck, rail, barge, and pipeline access. Pathway will develop a platform of commercial-scale facilities in areas with a high potential for geological storage to utilize BECCS (Biomass Energy Carbon Capture and Storage) and gasification technology to capture and store carbon, according to a news release.

The market for sustainable aviation fuel uses imported, used cooking oil (UCO HEFA). UCO HEFA SAF can’t materially decarbonize aviation since its constrained supply and positive carbon intensity score. Pathway’s ultra carbon-negative fuel is synthetic drop-in jet fuel that achieves a 550% reduction of carbon compared to traditional jet fuel, which is an industry first. Pathway believes this can abate as much as 6,000 flights a year.

Pathway uses an ultra-negative SAF, which carriers require less SAF to achieve emissions reduction as HEFA, which translates to emissions reduction, and lower cost of operations. The aviation industry can potentially achieve up to 8 times more emissions reductions compared to HEFA SAF.

“We saw the opportunity to provide carriers a pathway to completely decarbonize their flights with our net zero blended fuel," Joshua Pearson, Pathway CTO, adds. "This is a new type of SAF production that is 7-9 (times) more carbon negative than the SAF on the market today and represents the most sustainable, cost efficient and de-risked path to decarbonize global aviation.”

Andrew Chang, managing director of United Airlines Ventures, says it's his job to accelerate the airline's mission to decarbonize operations. Photo via LinkedIn

How United Airlines got into the sustainable energy biz

funding SAF

While someone might not immediately make the connection between aviation and the energy transition, United Airlines understands the importance of more sustainable fuel — and has put its money where its mouth is.

According to an International Energy Agency report, the aviation accounted for 2 percent of global energy-related CO2 emissions last year. Earlier this year, United Airlines launched a fund that called for collaboration across the industry.

After only five months, the United Airlines Ventures Sustainable Flight Fund SM increased to nearly $200 million and added new financial partners, airlines, and more. The fund takes on funding from its 13 limited partners and exists separately from United's core business operations.

Andrew Chang, managing director of United Airlines Ventures, says it's his job to accelerate the airline's mission to decarbonize operations. He explains that working together on the fund is the key for advancing sustainable aviation fuel, or SAF.

"We all recognize that we may compete in our core business, but with the importance of sustainable aviation fuel and given that it's an industry that doesn't exist — you can't compete for something that doesn't exist — let's collaborate and work together to explore technologies that can directly or indirectly support the commercialization and production of sustainable aviation fuel," he says on the Houston Innovators Podcast.

United Airlines also recently signed an offtake agreement with Cemvita Factory, a Houston biotech startup that's working on SAF. Chang discusses this partnership on the show, as well as explaining how he works with other startups and what he's looking for.

The offtake agreement and the fund are just two examples of how United is building to a more sustainable future. As Chang explains on the show, the aviation industry hasn't evolved too much over the past three or four decades.

"It's been a challenging market," he says, blaming the ever-evolving macroeconomic conditions for providing challenges for the airline, taking away its focus from new technologies. "But I think we are at a point where the industry is in a healthier place, the sector has consolidated, we are supported by our consumers, and we are now empowered with the financial and strategic capital to think ahead."

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown and partners name 10 startups to carbontech accelerator

new cohort

The Carbon to Value Initiative (C2V Initiative)—a collaboration between Greentown Labs, NYU Tandon School of Engineering's Urban Future Lab and Fraunhofer USA—has announced 10 startup participants to join the fifth cohort of its carbontech accelerator.

The six-month accelerator aims to help cleantech startups advance their commercialization efforts through access to the C2V Initiative’s Carbontech Leadership Council (CLC). The invitation-only council consists of corporate and nonprofit leaders from organizations like Shell, TotalEnergies, XPRIZE, L’Oréal and others who “foster commercialization opportunities and identify avenues for technology validation, testing, and demonstration,” according to a release from Greentown

“The No. 1 reason startups engage with Greentown is to find customers, grow their businesses, and accelerate impact—and the Carbon to Value Initiative delivers exactly that,” Georgina Campbell Flatter, CEO of Greentown, said in a news release. “It’s a powerful example of how meaningful engagement between entrepreneurs and industry turns innovation into commercial traction.”

The C2V Initiative received more than 100 applications from 33 countries, representing a variety of carbontech innovations. The 10 startups chosen for the 2025 fifth cohort include:

  • Cambridge, Massachusetts-based Sora Fuel, which integrates direct-air capture with direct conversion of the captured carbon into syngas for production of sustainable aviation fuel
  • Brooklyn-based Arbon, which develops a humidity-swing carbon-capture solution by capturing CO₂ from the air or point-source without heat or pressure
  • New York-based Cella Mineral Storage, which works to develop subsurface mineralization technology with integrated software, enabling new ways to sequester CO2 underground
  • Germany-based ICODOS, which helps transform emissions into value through a point-source carbon capture and methanol synthesis process in a single, modularized system
  • Vancouver-based Lite-1, which uses advanced biomanufacturing processes to produce circular colourants for use in textiles, cosmetics and food
  • London-based Mission Zero Technologies, which has developed and deployed an electrified, direct-air carbon capture solution that employs both liquid-adsorption and electrochemical technologies
  • Kenya-based Octavia Carbon, which develops a solid-adsorption-based, direct-air carbon capture solution that utilizes geothermal heat
  • California-based Rushnu, which combines point-source carbon capture with chemical production, turning salt and CO2 into chlorine-based chemicals and minerals
  • Brooklyn-based Turnover Labs, which develops modular electrolyzers that transform raw, industrial CO2 emissions into chemical building blocks, without capture or purification
  • Ontario-based Universal Matter, which develops a Flash Joule Heating process that converts carbon waste such as end-of-life plastics, tires or industrial waste into graphene

The C2V Initiative is based on Greentown Go, Greentown’s open-innovation program. The C2V Initiative has supported 35 startups that have raised over $600 million in follow-on funding.

Read about the 2024 cohort here.

CenterPoint gets go-ahead for $2.9B upgrade of Houston grid

grid resiliency

Texas utility regulators have given the green light for Houston-based CenterPoint Energy to spend $2.9 billion on strengthening its Houston-area electric grid to better withstand extreme weather.

The cost of the plan is nearly $3 billion below what CenterPoint initially proposed to the Public Utility Commission of Texas.

In early 2025, CenterPoint unveiled a $5.75 billion plan to upgrade its Houston-area power system from 2026 through 2028. But the price tag dropped to $2.9 billion as part of a legal settlement between CenterPoint and cities in the utility’s service area.

Sometime after the first quarter of next year, CenterPoint customers in the Houston area will pay an extra $1 a month for the next three years to cover costs of the resiliency plan. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

CenterPoint says the plan is part of its “commitment to building the most resilient coastal grid in the country.”

A key to improving CenterPoint’s local grid will be stepping up management of high-risk vegetation (namely trees), which ranks as the leading cause of power outages in the Houston area. CenterPoint says it will “go above and beyond standard vegetation management by implementing an industry-leading three-year trim cycle,” clearing vegetation from thousands of miles of power lines.

The utility company says its plan aims to prevent Houston-area power outages in case of hurricanes, floods, extreme temperatures, tornadoes, wildfires, winter storms, and other extreme weather events.

CenterPoint says the plan will:

  • Improve systemwide resilience by 30 percent
  • Expand the grid’s power-generating capacity. The company expects power demand in the Houston area to grow 2 percent per year for the foreseeable future.
  • Save about $50 million per year on storm cleanup costs
  • Avoid outages for more than 500,000 customers in the event of a disaster like last year’s Hurricane Beryl
  • Provide 130,000 stronger, more storm-resilient utility poles
  • Put more than 50 percent of the power system underground
  • Rebuild or upgrade more than 2,200 transmission towers
  • Modernize 34,500 spans of underground cables

In the Energy Capital of the World, residents “expect and deserve an electric system that is safe, reliable, cost-effective, and resilient when they need it most. We’re determined to deliver just that,” Jason Wells, president and CEO of CenterPoint, said in January.

Solidec partners with Australian company for clean hydrogen peroxide pilot​

rare earth pilot

Solidec has partnered with Australia-based Lynas Rare Earth, an environmentally responsible producer of rare earth oxides and materials, to reduce emissions from hydrogen peroxide production.

The partnership marks a milestone for the Houston-based clean chemical manufacturing startup, as it would allow the company to accelerate the commercialization of its hydrogen peroxide generation technology, according to a news release.

"This collaboration is a major milestone for Solidec and a catalyst for sustainability in rare earths," Yang Xia, co-founder and CTO of Solidec, said in the release. "Solidec's technology can reduce the carbon footprint of hydrogen peroxide production by up to 90%. By combining our generators with the scale of a global leader in rare earths, we can contribute to a more secure, sustainable supply of critical minerals."

Through the partnership, Solidec will launch a pilot program of its autonomous, on-site generators at Lynas's facility in Australia. Solidec's generators extract molecules from water and air and convert them into carbon emission-free chemicals and fuels, like hydrogen peroxide. The generators also eliminate the need for transport, storage and permitting, making for a simpler, more efficient process for producing hydrogen peroxide than the traditional anthraquinone process.

"Hydrogen peroxide is essential to rare earth production, yet centralized manufacturing adds cost and complexity," Ryan DuChanois, co-founder and CEO of Solidec, added in the release. "By generating peroxide directly on-site, we're reinventing the chemical supply chain for efficiency, resilience, and sustainability."

The companies report that the pilot is expected to generate 10 tons of hydrogen peroxide per year.

If successful, the pilot would serve as a model for large-scale deployments of Solidec's generators across Lynas' operations—and would have major implications for the high-performance magnet, electric vehicles, wind turbine, and advanced electronics industries, which rely on rare earth elements.

"This partnership with Solidec is another milestone on the path to achieving our Towards 2030 vision," Luke Darbyshire, general manager of R&I at Lynas, added. "Working with Solidec allows us to establish transformative chemical supply pathways that align with our innovation efforts, while contributing to our broader vision for secure, sustainable rare earth supply chains."