Syzygy Plasmonics will develop a facility, known as NovaSAF 1, to convert biogas into sustainable aviation fuel in Uruguay. Photo courtesy of Syzygy

Houston-based Syzygy Plasmonics announced plans to develop what it calls the world's first electrified facility to convert biogas into sustainable aviation fuel (SAF).

The facility, known as NovaSAF 1, will be located in Durazno, Uruguay. It is expected to produce over 350,000 gallons of SAF annually, which would be considered “a breakthrough in cost-effective, scalable clean fuel,” according to the company.

"This is more than just a SAF plant; it's a new model for biogas economics," Trevor Best, CEO of Syzygy Plasmonics, said in a news release. "We're unlocking a global asset class of underutilized biogas sites and turning them into high-value clean fuel hubs without pipelines, costly gas separation, or subsidy dependence.”

The project is backed by long-term feedstock and site agreements with one of Uruguay's largest dairy and agri-energy operations, Estancias del Lago, while the permitting and equipment sourcing are ongoing alongside front-end engineering work led by Kent.

Syzygy says the project will result in a 50 percent higher SAF yield than conventional thermal biogas reforming pathways and will utilize both methane and CO2 naturally found in biogas as feedstocks, eliminating the need for expensive CO2 separation technologies and infrastructure. Additionally, the modular facility will be designed for easy replication in biogas-rich regions.

The new facility is expected to begin commercial operations in Q1 2027 and produce SAF with at least an 80 percent reduction in carbon intensity compared to Jet A fuel. The company says that once fully commercialized the facility will produce SAF at Jet-A fuel cost parity.

“We believe NovaSAF represents one of the few viable pathways to producing SAF at jet parity and successfully decarbonizing air travel,” Best added in the release.

Pathway Energy has announced a major sustainable aviation fuel project in Port Arthur, Texas. Rendering courtesy of Pathway Energy

Houston company's $2B carbon-negative fuel project to rise in Southeast Texas

eyes on SAF

Houston developer of ultra carbon-negative fuels projects Pathway Energy announced a series of commercial-scale sustainable aviation fuel (SAF) facilities with the first being based in Port Arthur, Texas.

The project, estimated to be valued at $2 billion, will be one of the largest decarbonization projects in the world.

Pathway plans to bring commercial SAF to market with its years of experience in waste and biomass conversion processes and technologies that include biomass gasification, Fischer-Tropsch, biomass power generation, and complex biorefinery and industrial processes. Pathway will be working with companies like Sumitomo SHI FW, who will supply the project with gasification process technology packages and power production. Pathway Energy also announced a strategic partnership with Drax Global, which is a biomass feedstock provider.

"We are happy to debut with the best technology and industrial partners in the industry on a market opportunity with global significance," Steve Roberts, CEO of Pathway Energy, says in a news release. "With the ultra negative carbon intensity achieved through our process, Pathway Energy is poised to lead a global market for ultra negative fuels, driving large scale emission reductions across the aviation sector."

In the Port Arthur project, Pathway plans to leverage sustainable biomass feedstock and access to geological storage to sequester carbon and to produce its ultra carbon-negative SAF. The site location already is equipped with industrial scale import and export logistics including established truck, rail, barge, and pipeline access. Pathway will develop a platform of commercial-scale facilities in areas with a high potential for geological storage to utilize BECCS (Biomass Energy Carbon Capture and Storage) and gasification technology to capture and store carbon, according to a news release.

The market for sustainable aviation fuel uses imported, used cooking oil (UCO HEFA). UCO HEFA SAF can’t materially decarbonize aviation since its constrained supply and positive carbon intensity score. Pathway’s ultra carbon-negative fuel is synthetic drop-in jet fuel that achieves a 550% reduction of carbon compared to traditional jet fuel, which is an industry first. Pathway believes this can abate as much as 6,000 flights a year.

Pathway uses an ultra-negative SAF, which carriers require less SAF to achieve emissions reduction as HEFA, which translates to emissions reduction, and lower cost of operations. The aviation industry can potentially achieve up to 8 times more emissions reductions compared to HEFA SAF.

“We saw the opportunity to provide carriers a pathway to completely decarbonize their flights with our net zero blended fuel," Joshua Pearson, Pathway CTO, adds. "This is a new type of SAF production that is 7-9 (times) more carbon negative than the SAF on the market today and represents the most sustainable, cost efficient and de-risked path to decarbonize global aviation.”

Andrew Chang, managing director of United Airlines Ventures, says it's his job to accelerate the airline's mission to decarbonize operations. Photo via LinkedIn

How United Airlines got into the sustainable energy biz

funding SAF

While someone might not immediately make the connection between aviation and the energy transition, United Airlines understands the importance of more sustainable fuel — and has put its money where its mouth is.

According to an International Energy Agency report, the aviation accounted for 2 percent of global energy-related CO2 emissions last year. Earlier this year, United Airlines launched a fund that called for collaboration across the industry.

After only five months, the United Airlines Ventures Sustainable Flight Fund SM increased to nearly $200 million and added new financial partners, airlines, and more. The fund takes on funding from its 13 limited partners and exists separately from United's core business operations.

Andrew Chang, managing director of United Airlines Ventures, says it's his job to accelerate the airline's mission to decarbonize operations. He explains that working together on the fund is the key for advancing sustainable aviation fuel, or SAF.

"We all recognize that we may compete in our core business, but with the importance of sustainable aviation fuel and given that it's an industry that doesn't exist — you can't compete for something that doesn't exist — let's collaborate and work together to explore technologies that can directly or indirectly support the commercialization and production of sustainable aviation fuel," he says on the Houston Innovators Podcast.

United Airlines also recently signed an offtake agreement with Cemvita Factory, a Houston biotech startup that's working on SAF. Chang discusses this partnership on the show, as well as explaining how he works with other startups and what he's looking for.

The offtake agreement and the fund are just two examples of how United is building to a more sustainable future. As Chang explains on the show, the aviation industry hasn't evolved too much over the past three or four decades.

"It's been a challenging market," he says, blaming the ever-evolving macroeconomic conditions for providing challenges for the airline, taking away its focus from new technologies. "But I think we are at a point where the industry is in a healthier place, the sector has consolidated, we are supported by our consumers, and we are now empowered with the financial and strategic capital to think ahead."

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based ENGIE to add new wind and solar projects to Texas grid

coming soon

Houston-based ENGIE North America Inc. has expanded its partnership with Los Angeles-based Ares Infrastructure Opportunities to add 730 megawatts of renewable energy projects to the ERCOT grid.

The new projects will include one wind and two solar projects in Texas.

“The continued growth of our relationship with Ares reflects the strength of ENGIE’s portfolio of assets and our track record of delivering, operating and financing growth in the U.S. despite challenging circumstances,” Dave Carroll, CEO and Chief Renewables Officer of ENGIE North America, said in a news release. “The addition of another 730 MW of generation to our existing relationship reflects the commitment both ENGIE and Ares have to meeting growing demand for power in the U.S. and our willingness to invest in meeting those needs.”

ENGIE has more than 11 gigawatts of renewable energy projects in operation or under construction in the U.S. and Canada, and 52.7 gigawatts worldwide. The company is targeting 95 gigawatts by 2030.

ENGIE launched three new community solar farms in Illinois since December, including the 2.5-megawatt Harmony community solar farm in Lena and the Knox 2A and Knox 2B projects in Galesburg.

The company's 600-megawatt Swenson Ranch Solar project near Abilene, Texas, is expected to go online in 2027 and will provide power for Meta, the parent company of social media platform Facebook. Late last year, ENGIE also signed a nine-year renewable energy supply agreement with AstraZeneca to support the pharmaceutical company’s manufacturing operations from its 114-megawatt Tyson Nick Solar Project in Lamar County, Texas.

Houston geothermal company raises $97M Series B

fresh funding

Houston-based geothermal energy startup Sage Geosystems has closed its Series B fundraising round and plans to use the money to launch its first commercial next-generation geothermal power generation facility.

Ormat Technologies and Carbon Direct Capital co-led the $97 million round, according to a press release from Sage. Existing investors Exa, Nabors, alfa8, Arch Meredith, Abilene Partners, Cubit Capital and Ignis H2 Energy also participated, as well as new investors SiteGround Capital and The UC Berkeley Foundation’s Climate Solutions Fund.

The new geothermal power generation facility will be located at one of Ormat Technologies' existing power plants. The Nevada-based company has geothermal power projects in the U.S. and numerous other countries around the world. The facility will use Sage’s proprietary pressure geothermal technology, which extracts geothermal heat energy from hot dry rock, an abundant geothermal resource.

“Pressure geothermal is designed to be commercial, scalable and deployable almost anywhere,” Cindy Taff, CEO of Sage Geosystems, said in the news release. “This Series B allows us to prove that at commercial scale, reflecting strong conviction from partners who understand both the urgency of energy demand and the criticality of firm power.”

Sage reports that partnering with the Ormat facility will allow it to market and scale up its pressure geothermal technology at a faster rate.

“This investment builds on the strong foundation we’ve established through our commercial agreement and reinforces Ormat’s commitment to accelerating geothermal development,” Doron Blachar, CEO of Ormat Technologies, added in the release. “Sage’s technical expertise and innovative approach are well aligned with Ormat’s strategy to move faster from concept to commercialization. We’re pleased to take this natural next step in a partnership we believe strongly in.”

In 2024, Sage agreed to deliver up to 150 megawatts of new geothermal baseload power to Meta, the parent company of Facebook. At the time, the companies reported that the project's first phase would aim to be operating in 2027.

The company also raised a $17 million Series A, led by Chesapeake Energy Corp., in 2024.

Houston expert discusses the clean energy founder's paradox

Guest Column

Everyone tells you to move fast and break things. In clean energy, moving fast without structural integrity means breaking the only planet we’ve got. This is the founder's paradox: you are building a company in an industry where the stakes are existential, the timelines are glacial, and the capital requires patience.

The myth of the lone genius in a garage doesn’t really apply here. Clean energy startups aren’t just fighting competitors. They are fighting physics, policy, and decades of existing infrastructure. This isn’t an app. You’re building something physical that has to work in the real world. It has to be cheaper, more reliable, and clearly better than fossil fuels. Being “green” alone isn’t enough. Scale is what matters.

Your biggest risks aren’t competitors. They’re interconnection delays, permitting timelines, supply chain fragility, and whether your first customer is willing to underwrite something that hasn’t been done before.

That reality creates a brutal filter. Successful founders in this space need deep technical knowledge and the ability to execute. You need to understand engineering, navigate regulation, and think in terms of markets and risk. You’re not just selling a product. You’re selling a future where your solution becomes the obvious choice. That means connecting short-term financial returns with long-term system change.

The capital is there, but it’s smarter and more demanding. Investors today have PhDs in electrochemistry and grid dynamics. They’ve been burned by promises of miracle materials that never left the lab. They don't fund visions; they fund pathways to impact that can scale and make financial sense. Your roadmap must show not just a brilliant invention, but a clear, believable plan to drive costs down over time.

Capital in this sector isn’t impressed by ambition alone. It wants evidence that risk is being retired in the right order — even if that means slower growth early.

Here’s the upside. The difficulty of clean energy is also its strength. If you succeed, your advantage isn’t just in software or branding. It’s in hardware, supply chains, approvals, and years of hard work that others can’t easily copy. Your real competitors aren’t other startups. They’re inertia and the existing system. Winning here isn’t zero-sum. When one solution scales, it helps the entire market grow.

So, to the founder in the lab, or running field tests at a remote site: your pace will feel slow. The validation cycles are long. But you are building in the physical world. When you succeed, you don’t have an exit. You have a foundation. You don't just have customers; you have converts. And the product you ship doesn't just generate revenue; it creates a legacy.

If your timelines feel uncomfortable compared to software, that’s because you’re operating inside a system designed to resist change. And let’s not forget you are building actual physical products that interact with a complex world. Times are tough. Don’t give up. We need you.

---

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus.