Navigating the energy transition is a relay race, and the baton is in Houston, says this energy executive. Photo courtesy of SCS

Earlier this month, a West Texas-based oilfield equipment provider announced that it was opening an office in the Ion Houston. It's all a part of the company's energy transition plan.

SCS Technologies, based in Big Spring, Texas, has a new strategy and innovation-focused office in the Ion, the company announced last week. The company, which provides CO2 capture measurement and methane vapor recovery equipment for the energy, industrial, and environmental sectors, also announced René Vandersalm as the new COO.

These are just the latest moves for the company as the world moves away from hydrocarbons and toward a greener future, CEO Cody Johnson tells EnergyCapital, explaining that he recognizes Houston has a role in the energy transition.

"This is a relay race – a race that has already started," he says. "Houston is the place where the baton will be handed off – it’s the place where the race is occurring. SCS Technologies is determined to be part of this solution dreamed of and planned in Houston and then executed in the Permian Basin, where we call home."

In an interview with EnergyCapital, Johnson weighs in on the new office and the future of his company.

EnergyCapital: How has SCS’s business evolved amid the energy transition?

Cody Johnson: SCS Technologies was founded to design and fabricate customized Lease Automated Custody Transfer units in the Permian Basin. These LACT units were used primarily to measure the quality and quantity of crude oil at all points of custody transfer. Essentially, SCS Technologies produced the premier "crude cash registers" for the Permian Basin.

As the oil and gas industry has adapted into the energy transition industry, our customers and the communities we operate in have a growing need for SCS Technologies to use our design and fabrication of measurement skids to measure the quality and quantity of CO2 or to design and fabricate methane — and other vent gases — Vapor Recovery Units. SCS Technologies’ design and fabrication expertise in measurement skids, pump skids, and compression skids, coupled with our Permian Basin based training and fabrication campus, ideally positioned us to answer the call to fill the expertise and capacity gap.

EC: How are you preparing for the future of energy?

CJ: Society has been powered for the past 100 years or so by the management of hydrocarbon molecules. The essential tools for that have been and continue to be oil rigs, pipelines, and refineries in large part. This has given society many benefits but at a price to the environment that isn’t sustainable. Over the next 50 years, society will complete a transition away from managing hydrocarbon molecules and towards managing electrons. Those electrons are created by wind, solar, geothermal, or nuclear processes and travel down copper wires. Managing this transition that is already occurring and working together to do it in the near-term future of energy.

As we execute this transition over the next several decades from managing molecules to managing electrons to provide energy, molecule management companies must find ways to reach net zero emissions in their management practices. This means primarily capturing and managing methane vapors and capturing and sequestering CO2. This is starting in 2023 in a meaningful way and needs to continue past 2030 and probably past 2050 to have any chance to meet the globally shared social goal to achieve net zero emissions by 2050 and stay below a maximum increase of 1.5 degrees C in global temperatures.

The clock is ticking, and we are behind. The largest molecule management infrastructure investment in history must happen for us to reach these goals. It's mission-critical as one of the three things we simply cannot fail at to achieve net zero by 2050. SCS Technologies is very focused on being an intentional part of the tremendous supply chain buildout to support the infrastructure buildout.

EC: How does the new office in the Ion support these plans?


CJ: SCS Technologies needs to collaborate with the brightest minds working on the energy transition challenges. To contribute meaningfully to the overall effort and to be the thought leader in the methane vapor recovery and CO2 compression and measurement niche, we need to be at the heart of the energy transition collaboration community. That beating heart is the Ion in Houston.

EC: What role does your new COO, René Vandersalm, play in SCS evolving with the energy transition?


CJ: René is a proven executive in growing mission-critical design and fabrication capacity without sacrificing quality. René’s experience, capabilities, and global network will play a key role in our path forward.

EC: Based in West Texas, SCS has a growing presence in Houston. Why do you see Houston as a leader in the energy transition?

CJ: West Texas has an amazing group of oil and gas professionals and infrastructure. We are proud of that heritage and will always maintain our roots and foundation there. Houston has the only community of engineers, scientists, universities, companies, investors, and key professional service providers that can deliver on the buildout of the molecule management infrastructure required to buy the electron management infrastructure folks time to transition fully to green energy after 2050.

This is a relay race – a race that has already started. Houston is the place where the baton will be handed off – it’s the place where the race is occurring. SCS Technologies is determined to be part of this solution dreamed of and planned in Houston and then executed in the Permian Basin, where we call home.

------

This conversation has been edited for brevity and clarity.

SCS Technologies opened a new office in the Ion. Photo courtesy of the Ion

Texas oilfield equipment provider opens Houston office, names new COO amid energy transition growth

major moves

Big changes are happening at a Texas oilfield equipment provider. In the span of a few weeks, the company named a new C-level executive and announced a new strategic office.

SCS Technologies, based in Big Spring, Texas, has opened a new office in the Ion, a 266,000-square-foot innovation hub in Midtown, to focus on strategy and innovation. SCS provides CO2 capture measurement and methane vapor recovery equipment for the energy, industrial, and environmental sectors.

“Embracing Houston's pivotal role in the energy transition, the Ion has swiftly become the epicenter of innovative collaborations. For SCS Technologies, this marks an exciting opportunity to align our capabilities and technology with a diverse consortium of organizations working toward ambitious carbon-neutral goals,” says Cody Johnson, CEO of SCS Technologies, in a news release. “Looking ahead, we are invigorated by the boundless possibilities at the Ion, envisioning groundbreaking solutions and technologies that will unfold there.”

On July 20, SCS announced René Vandersalm as COO. Johnson says in a July 20 statement that the appointment comes at a time when "energy and industrial sectors are undergoing a considerable transformation of their processes and infrastructure to align with carbon-neutral goals."

Vandersalm previously worked for over 20 years at Thermon Manufacturing leading the company's heating solutions. In his new role, he says he will work within SCS "to design and produce the innovative compression and measurement systems our customers need to achieve emissions goals."

“It’s an exciting time as energy and industrial companies strive towards sustainable operations, all while delivering the energy and products that customers worldwide rely on,” Vandersalm continues in the release. “I am both excited and honored to collaborate with the talented and motivated SCS Technologies team as we make a significant impact in this industry-wide transition.”

SCS is partnered with New Orleans-based Black Bay Energy Capital, an energy-focused private equity fund.

The Ion has seen a flurry of activity when it comes to energy tenants. In March, United Kingdom-based Carbon Clean, opened its US headquarters in the Ion as it expands nationally. In April, the Ion named several other new tenants, which included industrial software company Cognite, robotics tech provider Nauticus, and more. These companies join Chevron, which officially opened its new outpost in 2022 after being announced as a founding partner in 2020. ExxonMobil is also a founding partner.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston microgrid company names new CEO

new hire

Houston-based electric microgrid company Enchanted Rock has named a new CEO.

John Carrington has assumed the role after serving as Enchanted Rock's executive chairman since June, the company announced earlier this month.

Carrington most recently was CEO of Houston-based Stem, which offers AI-enabled software and services designed for setting up and operating clean energy facilities. He stepped down as Stem’s CEO in September 2024. Stem, which was founded in 2006 and went public under Carrington's leadership in 2021, was previously based in San Francisco.

Carrington has also held senior leadership roles at Miasolé, First Solar and GE.

Corey Amthor has served as acting CEO of Enchanted Rock since June. He succeeded Enchanted Rock founder Thomas McAndrew in the role, with McAndrew staying on with the company as a strategic advisor and board member. With the hiring of Carrington, Amthor has returned to his role as president. According to the company, Amthor and Carrington will "partner to drive the company’s next phase of growth."

“I’m proud to join a leadership team known for technical excellence and execution, and with our company-wide commitment to innovation, we are well positioned to navigate this moment of unprecedented demand and advance our mission alongside our customers nationwide,” Carrington said in the news release. “Enchanted Rock’s technology platform delivers resilient, clean and scalable ultra-low-emissions onsite power that solves some of the most urgent challenges facing our country today. I’m energized by the strong momentum and growing market demand for our solutions, and we remain committed to providing data centers and other critical sectors with the reliable power essential to their operations.”

This summer, Enchanted Rock also announced that Ian Blakely would reassume the role of CFO at the company. He previously served as chief strategy officer. Paul Froutan, Enchanted Rock's former CTO, was also named COO last year.

6 major acquisitions that fueled the Houston energy sector in 2025

2025 In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy transition sector this year. Here are six major acquisitions that fueled the Houston energy industry in 2025:

Houston-based Calpine Corp. to be acquired in clean energy megadeal

Houston's Calpine Corp. will be acquired by Baltimore-based nuclear power company Constellation Energy Corp. Photo via DOE

In January 2025, Baltimore-based nuclear power company Constellation Energy Corp. and Houston-based Calpine Corp. entered into an agreement where Constellation would acquire Calpine in a cash and stock transaction with an overall net purchase price of $26.6 billion. The deal received final regulatory clearance this month.

Investment giant to acquire TXNM Energy for $11.5 billion

Blackstone Infrastructure, an affiliate of Blackstone Inc., will acquire a major Texas electricity provider. Photo via Shutterstock

In May 2025, Blackstone Infrastructure, an investment giant with $600 million in assets under management, agreed to buy publicly traded TXNM Energy in a debt-and-stock deal valued at $11.5 billion. The deal recently cleared a major regulatory hurdle, but still must be approved by the Public Utility Commission of Texas.

Houston's Rhythm Energy expands nationally with clean power acquisition

PJ Popovic, founder and CEO of Houston-based Rhythm Energy, which has acquired Inspire Clean Energy. Photo courtesy of Rhythm

Houston-based Rhythm Energy Inc. acquired Inspire Clean Energy in June 2025 for an undisclosed amount. The deal allowed Rhythm to immediately scale outside of Texas and into the Northeast, Midwest and mid-Atlantic regions.

Houston American Energy closes acquisition of New York low-carbon fuel co.

Houston American Energy Corp. has acquired Abundia Global Impact Group, which converts plastic and certified biomass waste into high-quality renewable fuels. Photo via Getty Images.

Renewable energy company Houston American Energy Corp. (NYSE: HUSA) acquired Abundia Global Impact Group in July 2025. The acquisition created a combined company focused on converting waste plastics into high-value, drop-in, low-carbon fuels and chemical products.

Chevron gets green light on $53 billion Hess acquisition

With the deal, Chevron gets access to one of the biggest oil finds of the decade. Photo via Chevron

In July 2025, Houston-based Chevron scored a critical ruling in Paris that provided the go-ahead for a $53 billion acquisition of Hess and access to one of the biggest oil finds of the decade. Chevron completed its acquisition of Hess shortly after the ruling from the International Chamber of Commerce in Paris.

Investors close partial acquisition of Phillips 66 subsidiary with growing EV network

Two investment firms have scooped up the majority stake in JET, a subsidiary of Phillips 66 with a rapidly growing EV charging network. Photo via Jet.de Facebook.

In December 2025, Energy Equation Partners, a London-based investment firm focused on clean energy companies, and New York-based Stonepeak completed the acquisition of a 65 percent interest in JET Tankstellen Deutschland GmbH, a subsidiary of Houston oil and gas giant Phillips 66.

Houston researchers develop energy-efficient film for AI chips

AI research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

---

This article originally appeared on our sister site, InnovationMap.