Navigating the energy transition is a relay race, and the baton is in Houston, says this energy executive. Photo courtesy of SCS

Earlier this month, a West Texas-based oilfield equipment provider announced that it was opening an office in the Ion Houston. It's all a part of the company's energy transition plan.

SCS Technologies, based in Big Spring, Texas, has a new strategy and innovation-focused office in the Ion, the company announced last week. The company, which provides CO2 capture measurement and methane vapor recovery equipment for the energy, industrial, and environmental sectors, also announced René Vandersalm as the new COO.

These are just the latest moves for the company as the world moves away from hydrocarbons and toward a greener future, CEO Cody Johnson tells EnergyCapital, explaining that he recognizes Houston has a role in the energy transition.

"This is a relay race – a race that has already started," he says. "Houston is the place where the baton will be handed off – it’s the place where the race is occurring. SCS Technologies is determined to be part of this solution dreamed of and planned in Houston and then executed in the Permian Basin, where we call home."

In an interview with EnergyCapital, Johnson weighs in on the new office and the future of his company.

EnergyCapital: How has SCS’s business evolved amid the energy transition?

Cody Johnson: SCS Technologies was founded to design and fabricate customized Lease Automated Custody Transfer units in the Permian Basin. These LACT units were used primarily to measure the quality and quantity of crude oil at all points of custody transfer. Essentially, SCS Technologies produced the premier "crude cash registers" for the Permian Basin.

As the oil and gas industry has adapted into the energy transition industry, our customers and the communities we operate in have a growing need for SCS Technologies to use our design and fabrication of measurement skids to measure the quality and quantity of CO2 or to design and fabricate methane — and other vent gases — Vapor Recovery Units. SCS Technologies’ design and fabrication expertise in measurement skids, pump skids, and compression skids, coupled with our Permian Basin based training and fabrication campus, ideally positioned us to answer the call to fill the expertise and capacity gap.

EC: How are you preparing for the future of energy?

CJ: Society has been powered for the past 100 years or so by the management of hydrocarbon molecules. The essential tools for that have been and continue to be oil rigs, pipelines, and refineries in large part. This has given society many benefits but at a price to the environment that isn’t sustainable. Over the next 50 years, society will complete a transition away from managing hydrocarbon molecules and towards managing electrons. Those electrons are created by wind, solar, geothermal, or nuclear processes and travel down copper wires. Managing this transition that is already occurring and working together to do it in the near-term future of energy.

As we execute this transition over the next several decades from managing molecules to managing electrons to provide energy, molecule management companies must find ways to reach net zero emissions in their management practices. This means primarily capturing and managing methane vapors and capturing and sequestering CO2. This is starting in 2023 in a meaningful way and needs to continue past 2030 and probably past 2050 to have any chance to meet the globally shared social goal to achieve net zero emissions by 2050 and stay below a maximum increase of 1.5 degrees C in global temperatures.

The clock is ticking, and we are behind. The largest molecule management infrastructure investment in history must happen for us to reach these goals. It's mission-critical as one of the three things we simply cannot fail at to achieve net zero by 2050. SCS Technologies is very focused on being an intentional part of the tremendous supply chain buildout to support the infrastructure buildout.

EC: How does the new office in the Ion support these plans?


CJ: SCS Technologies needs to collaborate with the brightest minds working on the energy transition challenges. To contribute meaningfully to the overall effort and to be the thought leader in the methane vapor recovery and CO2 compression and measurement niche, we need to be at the heart of the energy transition collaboration community. That beating heart is the Ion in Houston.

EC: What role does your new COO, René Vandersalm, play in SCS evolving with the energy transition?


CJ: René is a proven executive in growing mission-critical design and fabrication capacity without sacrificing quality. René’s experience, capabilities, and global network will play a key role in our path forward.

EC: Based in West Texas, SCS has a growing presence in Houston. Why do you see Houston as a leader in the energy transition?

CJ: West Texas has an amazing group of oil and gas professionals and infrastructure. We are proud of that heritage and will always maintain our roots and foundation there. Houston has the only community of engineers, scientists, universities, companies, investors, and key professional service providers that can deliver on the buildout of the molecule management infrastructure required to buy the electron management infrastructure folks time to transition fully to green energy after 2050.

This is a relay race – a race that has already started. Houston is the place where the baton will be handed off – it’s the place where the race is occurring. SCS Technologies is determined to be part of this solution dreamed of and planned in Houston and then executed in the Permian Basin, where we call home.

------

This conversation has been edited for brevity and clarity.

SCS Technologies opened a new office in the Ion. Photo courtesy of the Ion

Texas oilfield equipment provider opens Houston office, names new COO amid energy transition growth

major moves

Big changes are happening at a Texas oilfield equipment provider. In the span of a few weeks, the company named a new C-level executive and announced a new strategic office.

SCS Technologies, based in Big Spring, Texas, has opened a new office in the Ion, a 266,000-square-foot innovation hub in Midtown, to focus on strategy and innovation. SCS provides CO2 capture measurement and methane vapor recovery equipment for the energy, industrial, and environmental sectors.

“Embracing Houston's pivotal role in the energy transition, the Ion has swiftly become the epicenter of innovative collaborations. For SCS Technologies, this marks an exciting opportunity to align our capabilities and technology with a diverse consortium of organizations working toward ambitious carbon-neutral goals,” says Cody Johnson, CEO of SCS Technologies, in a news release. “Looking ahead, we are invigorated by the boundless possibilities at the Ion, envisioning groundbreaking solutions and technologies that will unfold there.”

On July 20, SCS announced René Vandersalm as COO. Johnson says in a July 20 statement that the appointment comes at a time when "energy and industrial sectors are undergoing a considerable transformation of their processes and infrastructure to align with carbon-neutral goals."

Vandersalm previously worked for over 20 years at Thermon Manufacturing leading the company's heating solutions. In his new role, he says he will work within SCS "to design and produce the innovative compression and measurement systems our customers need to achieve emissions goals."

“It’s an exciting time as energy and industrial companies strive towards sustainable operations, all while delivering the energy and products that customers worldwide rely on,” Vandersalm continues in the release. “I am both excited and honored to collaborate with the talented and motivated SCS Technologies team as we make a significant impact in this industry-wide transition.”

SCS is partnered with New Orleans-based Black Bay Energy Capital, an energy-focused private equity fund.

The Ion has seen a flurry of activity when it comes to energy tenants. In March, United Kingdom-based Carbon Clean, opened its US headquarters in the Ion as it expands nationally. In April, the Ion named several other new tenants, which included industrial software company Cognite, robotics tech provider Nauticus, and more. These companies join Chevron, which officially opened its new outpost in 2022 after being announced as a founding partner in 2020. ExxonMobil is also a founding partner.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston companies scoop up $31 million in funds from DOE, EPA methane emissions program

fresh funds

The U.S. Department of Energy and the U.S. Environmental Protection Agency announced the selection of seven projects from Houston companies to receive funding through the Methane Emissions Reduction Program.

The projects are among 43 others nationwide, including 12 from Texas, that reduce, monitor, measure, and quantify methane emissions from the oil and gas sector. The DOE and EPA awarded $850 million in total through the program.

The Houston companies picked up $31.7 million in federal funding through the program in addition to more than $9.5 million in non-federal dollars.

“I’m excited about the opportunities these will create internally but even more so the creation of jobs and training opportunities for the communities in which we work,” Scott McCurdy, Encino Environmental Services CEO, said in a news release. His company received awards for two projects.

“These projects will allow us to further support and strengthen the U.S. Energy industry’s ability to deliver clean, reliable, and affordable energy globally,” he added.

The Houston-area awards included:

DaphneTech USA LLC

Total funding: $5.8 million (approximately $4.5 million in federal, $1.3 million in non-federal)

The award was granted for the company’s Daphne and Williams Methane Slip Abatement Plasma-Catalyst Scale-Up project. Daphne will study how its SlipPure technology, a novel exhaust gas cleaning system that abates methane and exhaust gas pollution from natural gas-fueled engines, can be economically viable across multiple engine types and operating conditions.

Baker Hughes Energy Transition LLC 

Total funding: $7.47 million (approximately $6 million in federal, $1.5 million in non-federal)

The award was granted for the company’s Advancing Low Cost CH4 Emissions Reduction from Flares through Large Scale Deployment of Retrofittable and Adaptive Technology project. The project aims to develop a scalable, integrated methane emissions reduction system for flares based on optical gas imaging and estimation algorithms.

Encino Environmental Services

Total funding: $15.17 million (approximately $11 million in federal, $4.17 million in non-federal)

The award was granted for two projects. The Advanced Methane Reduction System: Integrating Infrared and Visual Imaging to Assess Net Heating Value at the Combustion Zone and Determine Combustion Efficiency to Enhance Flaring Performance project aims to develop and deploy an advanced continuous emissions monitoring system. It’s Advancing Methane Emissions Reduction through Innovative Technology project will develop and deploy a technology using sensors and composite materials to address emissions originating in storage tanks.

Envana Software Solutions

Total funding: $5.26 million (approximately $4.2 million in federal, $1 million in non-federal)

The award was granted for the company’s Leak Detection and Reduction Software to Identify Methane Emissions and Trigger Mitigation at Oil and Gas Production Facilities Based on SCADA Data project. It aims to improve its Recon software for monitoring methane emissions and develop partnerships with local universities and organizations.

Capwell Services Inc.

Total funding: $4.19 million (approximately $3.3 million in federal, $837,000 in non-federal)

The award was granted for its Methane Emissions Abatement Technology for Low-Flow and Intermittent Emission Sources project. It aims to to deploy and field-test a methane abatement unit and improve air quality and health outcomes for communities near production facilities and establish field technician internships for local residents.

Blue Sky Measurements 

Total funding: $3.41 million (approximately $2.7 million in federal, $683,000 in non-federal)

The award was granted for its Field Validation of Novel Fixed Position Optical Sensor for Fugitive Methane Emission Detection Quantification and Location with Real-Time Notification for Rapid Mitigation project. It aims to field test an optical sensing technology at six well sites in the Permian Basin.

Southern Methodist University, The University of Texas at Austin, Texas A&M Engineering Experiment Station and Hyliion Inc. were other Texas-based organizations to earn awards. See the full list of projects here.

Texas university's 'WaterHub' will dramatically reduce water usage by 40%

Sustainable Move

A major advancement in sustainability is coming to one Texas university. A new UT WaterHub at the University of Texas at Austin will be the largest facility of its kind in the U.S. and will transform how the university manages its water resources.

It's designed to work with natural processes instead of against them for water savings of an estimated 40 percent. It's slated for completion in late 2027.

The university has had an active water recovery program since the 1980s. Still, water is becoming an increasing concern in Austin. According to Texas Living Waters, a coalition of conservation groups, Texas loses enough water annually to fill Lady Bird Lake roughly 89 times over.

As Austin continues to expand and face water shortages, the region's water supply faces increased pressure. The UT WaterHub plans to address this challenge by recycling water for campus energy operations, helping preserve water resources for both the university and local communities.

The 9,600-square-foot water treatment facility will use an innovative filtration approach. To reduce reliance on expensive machinery and chemicals, the system uses plants to naturally filter water and gravity to pull it in the direction it needs to go. Used water will be gathered from a new collection point near the Darrell K Royal Texas Memorial Stadium and transported to the WaterHub, located in the heart of the engineering district. The facility's design includes a greenhouse viewable to the public, serving as an interactive learning space.

Beyond water conservation, the facility is designed to protect the university against extreme weather events like winter storms. This new initiative will create a reliable backup water supply while decreasing university water usage, and will even reduce wastewater sent to the city by up to 70 percent.

H2O Innovation, UT’s collaborator in this project, specializes in water solutions, helping organizations manage their water efficiently.

"By combining cutting-edge technology with our innovative financing approach, we’re making it easier for organizations to adopt sustainable water practices that benefit both their bottom line and the environment, paving a step forward in water positivity,” said H2O Innovation president and CEO Frédéric Dugré in a press release.

The university expects significant cost savings with this project, since it won't have to spend as much on buying water from the city or paying fees to dispose of used water. Over the next several years, this could add up to millions of dollars.

---

A version of this story originally appeared on our sister site, CultureMap Austin.

Report: Texas solar power, battery storage helped stabilize grid in summer 2024, but challenges remain

by the numbers

Research from the Federal Reserve Bank of Dallas shows that solar power and battery storage capacity helped stabilize Texas’ electric grid last summer.

Between June 1 and Aug. 31, solar power met nearly 25 percent of midday electricity demand within the Electric Reliability Council of Texas (ERCOT) power grid. Rising solar and battery output in ERCOT assisted Texans during a summer of triple-digit heat and record load demands, but the report fears that the state’s power load will be “pushed to its limits” soon.

The report examined how the grid performed during more demanding hours. At peak times, between 11 a.m. and 2 p.m. in the summer of 2024, solar output averaged nearly 17,000 megawatts compared with 12,000 megawatts during those hours in the previous year. Between 6 p.m. and 9 p.m., discharge from battery facilities averaged 714 megawatts in 2024 after averaging 238 megawatts for those hours in 2023. Solar and battery output have continued to grow since then, according to the report.

“Batteries made a meaningful contribution to what those shoulder periods look like and how much scarcity we get into during these peak events,” ERCOT CEO Pablo Vegas said at a board of directors conference call.

Increases in capacity from solar and battery-storage power in 2024 also eclipsed those of 2023. In 2023 ECOT added 4,570 megawatts of solar, compared to adding nearly 9,700 megawatts in 2024. Growth in battery storage capacity also increased from about 1,500 megawatts added in 2023 to more than 4,000 megawatts added in 2024. Natural gas capacity also saw increases while wind capacity dropped by about 50 percent.

Texas’ installation of utility-scale solar surpassed California’s in the spring of last year, and jumped from 1,900 megawatts in 2019 to over 20,000 megawatts in 2024 with solar meeting about 50 percent of Texas' peak power demand during some days.

While the numbers are encouraging, the report states that there could be future challenges, as more generating capacity will be required due to data center construction and broader electrification trends. The development of generating more capacity will rely on multiple factors like price signals and market conditions that invite more baseload and dispatchable generating capacity, which includes longer-duration batteries, and investment in power purchase agreements and other power arrangements by large-scale consumers, according to the report.

Additionally, peak demand during winter freezes presents challenges not seen in the summer. For example, in colder months, peak electricity demand often occurs in the early morning before solar energy is available, and it predicts that current battery storage may be insufficient to meet the demand. The analysis indicated a 50% chance of rolling outages during a cold snap similar to December 2022 and an 80% chance if conditions mirror the February 2021 deep freeze at the grid’s current state.

The report also claimed that ERCOT’s energy-only market design and new incentive structures, such as the Texas Energy Fund, do not appear to be enough to meet the predicted future magnitude and speed of load growth.

Read the full report here.