Next month, 96 startups will pitch at an annual event focused on the future of energy. Here's who will be there. Photo via rice.edu
Dozens of companies will be a part of an upcoming energy-focused conference at Rice University — from climate tech startups to must-see keynote speakers.
The 20th Annual Rice Alliance Energy Tech Venture Forum will take place on September 21 at Rice University’s Jones Graduate School of Business. Anyone who's interested in learning more about the major players in the low-carbon future in Houston and beyond should join the industry leaders, investors, and promising energy and cleantech startups in attendance.
This year's keynote speakers include Christina Karapataki, partner at Breakthrough Energy Ventures, the venture capital fund backed by Bill Gates; Scott Nyquist, vice chairman at Houston Energy Transition Initiative, founded by the Greater Houston Partnership; and Jeff Tillery, COO at Veriten.
Nearly 100 startups will also be pitching throughout the day, and at the end of the program, the most-promising companies — according to investors — will be revealed. See below for the 2023 selection of companies.
Presenting companies:
Element Resources
Eugenie AI
Flash H2 Synthesis from Waste Plastic at Zero Net Cost
Fifteen startups — with clean energy solutions involving everything from solar energy to hydrogen — are joining Rice Alliance's Clean Energy Accelerator later this summer. Photo via Getty Images
A clean energy program has announced its third cohort and named the 15 startups that were accepted into to the accelerator.
The Rice Alliance's Clean Energy Accelerator revealed its 2023 cohort that will be in the 10-week program that kicks of July 25. CEA, a hybrid program based out of the Ion, will wrap up with a Demo Day alongside the 20th Annual Rice Alliance Energy Tech Venture Forum on September 21.
The accelerator, led by Kerri Smith and Matt Peña, provides the cohort with programming, networking, and mentorship from six executives in residence — Nathan Ball, Fatimah Bello, Michael Egan, Michael Evans, Stephen Sims, and Deanna Zhang.
Since the Clean Energy Accelerator launched in 2021, the program has supported 29 ventures that have gone on to raise over $75 million in funding, identified and launched pilots, and created jobs, According to Rice, many of these companies relocated to Houston.
Class 3, which has already raised $23.3 million in funding, hails from four countries and seven states and are addressing a range of energy solutions — from advanced materials, carbon management/capture, energy storage, hydrogen, solar energy, wind energy, and more. They were selected by a screening committee consisting of more than 50 industry experts, investors, energy leaders, and entrepreneurs.
The third class, as announced by Rice Alliance, is as follows:
Ayrton Energy, based in Alberta, Canada,provides hydrogen storage technology that improves hydrogen transport logistics for distributed energy applications.
Headquartered in Massachusetts,Carbix transforms atmospheric carbon dioxide emissions into building materials using proprietary reactor technology.
Houston-based CryoDesalination lowers the carbon footprint and cost of removing salts and heavy metals from water and industrial effluents.
Digital Carbon Bank,based in Alberta, Canada, provides a carbon solution tailored for the energy industry.
Chandler, Arizona-basedEarthEn provides compressed carbon dioxide-based energy storage and artificial intelligence solutions allowing grid owners/operators to be completely renewable.
H Quest Vanguard, from Pittsburgh, provides green hydrogen at a five to 10 times lower cost to users of natural gas to decarbonize industrial heat.
Calgary, Alberta-based Highwood Emissions Management'sSaaS platform allows oil and gas companies to understand their emissions and develop robust plans to reduce them.
Icarus RT,from San Diego, California, improves photovoltaic efficiency while enabling useful heat energy storage.
Los Altos, California-based Khepra has developed a chemical manufacturing platform for the low-cost, sustainable production of agrochemicals.
Binghamton, New York-based Natrion’s electrolyte is a drop-in solid-state battery component that can be rapidly implemented into existing batteries.
Oceanways, based in London, provides low-cost, flexible and scalable zero-emission underwater "virtual pipelines" to energy producers.
Relyion Energy, from Santa Clara, California, is developing battery usage and intelligence solutions with deeper data and insights for retired electric vehicle batteries.
Massachusetts-based Triton Anchor provides a more cost-effective anchoring solution for offshore clean energy with minimal environmental impact.
TROES, from Markham, Ontario, provides a 4-in-1 microgrid solution with integrated hardware and software for a streamlined energy storage experience.
Mexico City-basedTycho Solutionssupports clean energy project developers by saving time and money during the critical project-siting process.
There’s a reason “carbon footprint” became a buzzword. It sounds like something we should know. Something we should measure. Something that should be printed next to the calorie count on a label.
But unlike calories, a carbon footprint isn’t universal, standardized, or easy to calculate. In fact, for most companies—especially in energy and heavy industry—it’s still a black box.
That’s the problem Planckton Data is solving.
On this episode of the Energy Tech Startups Podcast, Planckton Data co-founders Robin Goswami and Sandeep Roy sit down to explain how they’re turning complex, inconsistent, and often incomplete emissions data into usable insight. Not for PR. Not for green washing. For real operational and regulatory decisions.
And they’re doing it in a way that turns sustainability from a compliance burden into a competitive advantage.
From calories to carbon: The label analogy that actually works
If you’ve ever picked up two snack bars and compared their calorie counts, you’ve made a decision based on transparency. Robin and Sandeep want that same kind of clarity for industrial products.
Whether it’s a shampoo bottle, a plastic feedstock, or a specialty chemical—there’s now consumer and regulatory pressure to know exactly how sustainable a product is. And to report it.
But that’s where the simplicity ends.
Because unlike food labels, carbon labels can’t be standardized across a single factory. They depend on where and how a product was made, what inputs were used, how far it traveled, and what method was used to calculate the data.
Even two otherwise identical chemicals—one sourced from a refinery in Texas and the other in Europe—can carry very different carbon footprints, depending on logistics, local emission factors, and energy sources.
Planckton’s solution is built to handle exactly this level of complexity.
AI that doesn’t just analyze
For most companies, supply chain emissions data is scattered, outdated, and full of gaps.
That’s where Planckton’s use of AI becomes transformative.
It standardizes data from multiple suppliers, geographies, and formats.
It uses probabilistic models to fill in the blanks when suppliers don’t provide details.
It applies industry-specific product category rules (PCRs) and aligns them with evolving global frameworks like ISO standards and GHG Protocol.
It helps companies model decarbonization pathways, not just calculate baselines.
This isn’t generative AI for show. It’s applied machine learning with a purpose: helping large industrial players move from reporting to real action.
And it’s not a side tool. For many of Planckton’s clients, it’s becoming the foundation of their sustainability strategy.
From boardrooms to smokestacks: Where the pressure is coming from
Planckton isn’t just chasing early adopters. They’re helping midstream and upstream industrial suppliers respond to pressure coming from two directions:
Downstream consumer brands—especially in cosmetics, retail, and CPG—are demanding footprint data from every input supplier.
Upstream regulations—especially in Europe—are introducing reporting requirements, carbon taxes, and supply chain disclosure laws.
The team gave a real-world example: a shampoo brand wants to differentiate based on lower emissions. That pressure flows up the value chain to the chemical suppliers. Who, in turn, must track data back to their own suppliers.
It’s a game of carbon traceability—and Planckton helps make it possible.
Why Planckton focused on chemicals first
With backgrounds at Infosys and McKinsey, Robin and Sandeep know how to navigate large-scale digital transformations. They also know that industry specificity matters—especially in sustainability.
So they chose to focus first on the chemicals sector—a space where:
Supply chains are complex and often opaque.
Product formulations are sensitive.
And pressure from cosmetics, packaging, and consumer brands is pushing for measurable, auditable impact data.
It’s a wedge into other verticals like energy, plastics, fertilizers, and industrial manufacturing—but one that’s already showing results.
Carbon accounting needs a financial system
What makes this conversation unique isn’t just the product. It’s the co-founders’ view of the ecosystem.
They see a world where sustainability reporting becomes as robust as financial reporting. Where every company knows its Scope 1, 2, and 3 emissions the way it knows revenue, gross margin, and EBITDA.
But that world doesn’t exist yet. The data infrastructure isn’t there. The standards are still in flux. And the tooling—until recently—was clunky, manual, and impossible to scale.
Planckton is building that infrastructure—starting with the industries that need it most.
Houston as a launchpad (not just a legacy hub)
Though Planckton has global ambitions, its roots in Houston matter.
The city’s legacy in energy and chemicals gives it a unique edge in understanding real-world industrial challenges. And the growing ecosystem around energy transition—investors, incubators, and founders—is helping companies like Planckton move fast.
“We thought we’d have to move to San Francisco,” Robin shares. “But the resources we needed were already here—just waiting to be activated.”
The future of sustainability is measurable—and monetizable
The takeaway from this episode is clear: measuring your carbon footprint isn’t just good PR—it’s increasingly tied to market access, regulatory approval, and bottom-line efficiency.
And the companies that embrace this shift now—using platforms like Planckton—won’t just stay compliant. They’ll gain a competitive edge.
Listen to the full conversation with Planckton Data on the Energy Tech Startups Podcast:
Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.
Houston climatech company Gold H2 completed its first field trial that demonstrates subsurface bio-stimulated hydrogen production, which leverages microbiology and existing infrastructure to produce clean hydrogen.
“When we compare our tech to the rest of the stack, I think we blow the competition out of the water," Prabhdeep Singh Sekhon, CEO of Gold H2 Sekhon previously told Energy Capital.
The project represented the first-of-its-kind application of Gold H2’s proprietary biotechnology, which generates hydrogen from depleted oil reservoirs, eliminating the need for new drilling, electrolysis or energy-intensive surface facilities. The Woodlands-based ChampionX LLC served as the oilfield services provider, and the trial was conducted in an oilfield in California’s San Joaquin Basin.
According to the company, Gold H2’s technology could yield up to 250 billion kilograms of low-carbon hydrogen, which is estimated to provide enough clean power to Los Angeles for over 50 years and avoid roughly 1 billion metric tons of CO2 equivalent.
“This field trial is tangible proof. We’ve taken a climate liability and turned it into a scalable, low-cost hydrogen solution,” Sekhon said in a news release. “It’s a new blueprint for decarbonization, built for speed, affordability, and global impact.”
Highlights of the trial include:
First-ever demonstration of biologically stimulated hydrogen generation at commercial field scale with unprecedented results of 40 percent H2 in the gas stream.
Demonstrated how end-of-life oilfield liabilities can be repurposed into hydrogen-producing assets.
The trial achieved 400,000 ppm of hydrogen in produced gases, which, according to the company,y is an “unprecedented concentration for a huff-and-puff style operation and a strong indicator of just how robust the process can perform under real-world conditions.”
The field trial marked readiness for commercial deployment with targeted hydrogen production costs below $0.50/kg.
“This breakthrough isn’t just a step forward, it’s a leap toward climate impact at scale,” Jillian Evanko, CEO and president at Chart Industries Inc., Gold H2 investor and advisor, added in the release. “By turning depleted oil fields into clean hydrogen generators, Gold H2 has provided a roadmap to produce low-cost, low-carbon energy using the very infrastructure that powered the last century. This changes the game for how the world can decarbonize heavy industry, power grids, and economies, faster and more affordably than we ever thought possible.”
HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.
The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.
The technology has major implications for the future of computing with AI sustainably.
“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.
HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.
"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.