Businesswoman, philanthropist, educator, and entertainer Revani “Rani” Puranik discusses the convergence of sustainability and work ethos as part of the Energy Transition. Photo courtesy of ranipuranik.com

With a mind for business and a passion for people, one woman leads the legacy her family trailblazed in corporate social responsibility.

Revani “Rani” Puranik, named successor for the CEO of Worldwide Oilfield Machine (“WOM”) and current Chair of the Puranik Foundation, continues the institutions her parents created with the same emphasis on mindfulness, sustainability, and opportunity for all.

In addition to extending the reach of WOM’s 3,000+ employees across 10 countries–and counting–Puranik shapes future leaders and innovators of energy through The Energy Project, a program launched in 2020 by the foundation to support young minds tackling environmental challenges for sustainable development across five sectors: Alternative Power Generation, Sustainable Consumption, Waste Management, Urban Design, and Water Sustainability.

In her upcoming book, Seven Letters to My Daughters, scheduled for release on May 24th, Puranik shares lessons in love, leadership, and legacy carved out of distinct seven-year periods of her life. And if inspiring the next generation and writing a book weren’t enough, Puranik has her eyes set on building a more holistic charter school in collaboration with Baylor College of Medicine.

With just a moment to spare before she launches a new initiative, Puranik met with EnergyCapitalHTX to discuss what Energy Transition looks like from her perspective.

EnergyCapitalHTX: You’ve had an interesting career, with one foot in something very altruistic, and the other in energy–which has a reputation for being… not so altruistic, let’s say. How did you get here?

Rani Puranik: First, I'll tell you that none of it, none of it, was planned.

The 1st 17 years of my life, I lived in Houston. I went to Lamar high school thinking I was going to be an engineer. But I was on a robust and dedicated journey singing and dancing, too. I was always very active and engaged in my heritage that way.

I went to India after I graduated from high school and stayed in my parents’ vacation home, which was next to a poverty-stricken area. All I thought was, “hey, how can I help?”

And that “how can I help?“ has always turned into larger projects than I ever imagined. Before long, I was running an after-school dance program for 60 kids. But it was more than dance. These girls needed a safe space to express themselves.

EC: How did you end up back in Houston?

RP: Well, life happens. I came to Houston on a one-way ticket with $200 in my pocket. My dad was still living here in Houston, running Worldwide Machine, so I volunteered in his company to keep busy.

Finally, in 2012, I realized I’m never going to be an engineer; I graduated from Rice with an MBA in finance in 2014. And then I just dedicated my entire life to WOM, my two girls, and the Puranik Foundation my mother started when I was in India.

EC: On one hand, you're encouraging innovation around building a sustainable environment with Puranik Foundation. And with WOM, you provide offshore equipment, services, and expertise. Do you see those concepts blending as part of the energy transition?

RP: One of the core principles of WOM is “stay curious.” We have something called the Idea Factory; sometimes we get ideas that are related to sustainability and alternative energies. The people that come up with these solutions and methods are deeply involved from start to finish as part of our research and development team.

We’ve currently got a patent on a frac valve that is so much healthier for the environment. There’s no disposal of grease, there’s much less use of water and chemicals injected because of the way our frac valve operates, and the pressures and temperatures it can sustain and withhold.

We’re also looking at design, revisiting processes and asking, “how can we make this more efficient?” How can we reduce not just the emissions, but the use of oils and liquids and fuels with process improvements and enhancements for the equipment that we're manufacturing?

EC: And for the foundation?

RP: What's important for me is to understand what energy is, why it's needed, and how we can tap into it from all sources.

If younger minds can think of things like some of the students in this year’s cohort of The Energy Project– things like using human movement to not just capture, but transform, energy–we're headed in the right direction.

EC: The energy transition is increasingly branded as a transition in mindset more than anything. Mindfulness is a core tenet of your foundation, is it a part of the nine core principles of WOM you mentioned?

RP: Absolutely. I've been called an empathetic leader because I listen. And I say the first part of listening is receiving. When you receive information, you're empowering yourself with knowledge and information being shared by someone else for you. And then you can offer a direction, a guide, or just a helping hand.

There's definitely a shift going on where people not just want to be heard, but there are leaders and organizations who understand the value and the importance of it. We can't do things on our own.

EC: You emphasize collaboration and human connectivity often, which are vital components of the sustainability economy. Can you elaborate on how your organizations embody these concepts?

RP: I made up the “earn to return” philosophy because I saw it in my own parents and I said, I've been given very valuable resources and I've been given a talent to connect people. And if together, that can create something beautiful to really enhance the abundance of resources and create stable pathways for people in their livelihoods, then that's my purpose and that's what I'm going to do.

And in the process, yeah, we make great sales, great profits. But then the profits have to be returned back to our local communities and our people and our kids so that they end up having stable livelihoods for their future. For me, that was always the driving force, and it still is.

But I'll tell you again, none of it was planned. None.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

SLB partners with renewables company to develop next-gen geothermal systems

geothermal partnership

Houston-based energy technology company SLB and renewable energy company Ormat Technologies have teamed up to fast-track the development and commercialization of advanced geothermal technology.

Their initiative focuses on enhanced geothermal systems (EGS). These systems represent “the next generation of geothermal technology, meant to unlock geothermal energy in regions beyond where conventional geothermal resources exist,” the companies said in a news release.

After co-developing EGS technology, the companies will test it at an existing Ormat facility. Following the pilot project, SLB and Nevada-based Ormat will pursue large-scale EGS commercialization for utilities, data center operators and other customers. Ormat owns, operates, designs, makes and sells geothermal and recovered energy generation (REG) power plants.

“There is an urgent need to meet the growing demand for energy driven by AI and other factors. This requires accelerating the path to clean and reliable energy,” Gavin Rennick, president of new energy at SLB, said in a news release.

Traditional geothermal systems rely on natural hot water or steam reservoirs underground, limiting the use of geothermal technology. EGS projects are designed to create thermal reservoirs in naturally hot rock through which water can circulate, transferring the energy back to the surface for power generation and enabling broader availability of geothermal energy.

The U.S. Department of Energy estimates next-generation geothermal, such as EGS, could provide 90 gigawatts of electricity by 2050.

Baker Hughes to provide equipment for massive low-carbon ammonia plant

coming soon

Houston-based energy technology company Baker Hughes has been tapped to supply equipment for what will be the world’s largest low-carbon ammonia plant.

French technology and engineering company Technip Energies will buy a steam turbine generator and compression equipment from Baker Hughes for Blue Point Number One, a $4 billion low-carbon ammonia plant being developed in Louisiana by a joint venture comprising CF Industries, JERA and Mitsui & Co. Technip was awarded a contract worth at least $1.1 billion to provide services for the Blue Point project.

CF, a producer of ammonia and nitrogen, owns a 40 percent stake in the joint venture, with JERA, Japan’s largest power generator, at 35 percent and Mitsui, a Japanese industrial conglomerate, at 25 percent.

The Blue Point Number One project, to be located at CF’s Blue Point ammonia production facility, will be capable of producing about 1.4 million metric tons of low-carbon ammonia per year and permanently storing up to 2.3 million metric tons of carbon dioxide.

Construction of the ammonia-making facility is expected to start in 2026, with production of low-carbon ammonia set to get underway in 2029.

“Ammonia, as a lower-carbon energy source, is poised to play a pivotal role in enabling and accelerating global sustainable energy development,” Alessandro Bresciani, senior vice president of energy equipment at Baker Hughes, said in a news release.

Earlier this year, British engineering and industrial gas company Linde signed a long-term contract to supply industrial gases for Blue Point Number One. Linde Engineering Americas is based in Houston.

Houston expert asks: Is the Texas grid ready for the future?

Guets Column

Texas has spent the past five years racing to strengthen its electric grid after Winter Storm Uri exposed just how vulnerable it was. Billions have gone into new transmission lines, grid hardening, and a surge of renewables and batteries. Those moves have made a difference, we haven’t seen another systemwide blackout like Uri, but the question now isn’t what’s been done, it’s whether Texas can keep up with what’s coming.

Massive data centers, electric vehicles, and industrial projects are driving electricity demand to unprecedented levels. NERC recently boosted its 10-year load forecast for Texas by more than 60%. McKinsey projects that U.S. electricity demand will rise roughly 40% by 2030 and double by 2050, with data centers alone accounting for as much as 11-12% of total U.S. electricity demand by 2030, up from about 4% today. Texas, already the top destination for new data centers, will feel that surge at a greater scale.

While the challenges ahead are massive and there will undoubtedly be bumps in the road (some probably big), we have an engaged Texas legislature, capable regulatory bodies, active non-profits, pragmatic industry groups, and the best energy minds in the world working together to make a market-based system work. I am optimistic Texas will find a way.

Why Texas Faces a Unique Grid Challenge

About 90% of Texas is served by a single, independent grid operated by ERCOT, rather than being connected to the two large interstate grids that cover the rest of the country. This structure allows ERCOT to avoid federal oversight of its market design, although it still must comply with FERC reliability standards. The trade-off is limited access to power from neighboring states during emergencies, leaving Texas to rely almost entirely on in-state generation and reserves when extreme weather hits.

ERCOT’s market design is also different. It’s an “energy-only” market, meaning generators are paid for electricity sold, not for keeping capacity available. While that lowers prices in normal times, it also makes it harder to finance backup, dispatchable generation like natural gas and batteries needed when the wind isn’t blowing or the sun isn’t shining.

The Risks Mounting

In Texas, solar and wind power supply a significant percentage of electricity to the grid. As Julie Cohn, a nonresident scholar at the Baker Institute, explains, these inverter‑based resources “connect through power electronics, which means they don’t provide the same physical signals to the grid that traditional generators do.” The Odessa incidents, where solar farms tripped offline during minor grid disturbances, showed how fragile parts of this evolving grid can be. “Fortunately, it didn’t result in customer outages, and it was a clear signal that Texas has the opportunity to lead in solving this challenge.”

Extreme weather adds more pressure while the grid is trying to adapt to a surge in use. CES research manager Miaomiao Rimmer notes: “Hurricane frequencies haven't increased, but infrastructure and population in their paths have expanded dramatically. The same hurricane that hit 70 years ago would cause far more damage today because there’s simply more in harm’s way.”

Medlock: “Texas has made significant strides in the last 5 years, but there’s more work to be done.”

Ken Medlock, Senior Director of the Center for Energy Studies at Rice University’s Baker Institute, argues that Texas’s problem isn’t a lack of solutions; it’s how quickly those solutions are implemented. He stresses that during the January 2024 cold snap, natural gas kept the grid stable, proving that “any system configuration with sufficient, dispatchable generation capacity would have kept the lights on.” Yet ERCOT load has exceeded dispatchable capacity with growing frequency since 2018, raising the stakes for future reliability.

Ken notes: “ERCOT has a substantial portfolio of options, including investment in dispatchable generation, storage near industrial users, transmission expansion, and siting generation closer to load centers. But allowing structural risks to reliability that can be avoided at a reasonable cost is unacceptable. Appropriate market design and sufficient regulatory oversight are critical.” He emphasizes that reliability must be explicitly priced into ERCOT’s market so backup resources can be built and maintained profitably. These resources, whether natural gas, nuclear, or batteries, cannot remain afterthoughts if Texas wants a stable grid.

Building a More Reliable Grid

For Texas to keep pace with rising demand and withstand severe weather, it must act decisively on multiple fronts, strengthening its grid while building for long-term growth.

  • Coordinated Planning: Align regulators, utilities, and market players to plan decades ahead, not just for next summer.
  • Balancing Clean and Reliable Power: Match renewable growth with flexible, dispatchable generation that can deliver power on demand.
  • Fixing Local Weak Spots: Harden distribution networks, where most outages occur, rather than focusing only on large-scale generation.
  • Market Reform and Technology Investment: Price reliability fairly and support R&D to make renewables strengthen, not destabilize, the grid.

In Conclusion

While Texas has undeniably improved its grid since Winter Storm Uri, surging electricity demand and intensifying weather mean the work is far from over. Unlike other states, ERCOT can’t rely on its neighbors for backup power, and its market structure makes new dispatchable resources harder to build. Decisive leadership, investment, and reforms will be needed to ensure Texas can keep the lights on.

It probably won’t be a smooth journey, but my sense is that Texas will solve these problems and do something spectacular. It will deliver more power with fewer emissions, faster than skeptics believe, and surprise us all.

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.