Pathway Energy has announced a major sustainable aviation fuel project in Port Arthur, Texas. Rendering courtesy of Pathway Energy

Houston developer of ultra carbon-negative fuels projects Pathway Energy announced a series of commercial-scale sustainable aviation fuel (SAF) facilities with the first being based in Port Arthur, Texas.

The project, estimated to be valued at $2 billion, will be one of the largest decarbonization projects in the world.

Pathway plans to bring commercial SAF to market with its years of experience in waste and biomass conversion processes and technologies that include biomass gasification, Fischer-Tropsch, biomass power generation, and complex biorefinery and industrial processes. Pathway will be working with companies like Sumitomo SHI FW, who will supply the project with gasification process technology packages and power production. Pathway Energy also announced a strategic partnership with Drax Global, which is a biomass feedstock provider.

"We are happy to debut with the best technology and industrial partners in the industry on a market opportunity with global significance," Steve Roberts, CEO of Pathway Energy, says in a news release. "With the ultra negative carbon intensity achieved through our process, Pathway Energy is poised to lead a global market for ultra negative fuels, driving large scale emission reductions across the aviation sector."

In the Port Arthur project, Pathway plans to leverage sustainable biomass feedstock and access to geological storage to sequester carbon and to produce its ultra carbon-negative SAF. The site location already is equipped with industrial scale import and export logistics including established truck, rail, barge, and pipeline access. Pathway will develop a platform of commercial-scale facilities in areas with a high potential for geological storage to utilize BECCS (Biomass Energy Carbon Capture and Storage) and gasification technology to capture and store carbon, according to a news release.

The market for sustainable aviation fuel uses imported, used cooking oil (UCO HEFA). UCO HEFA SAF can’t materially decarbonize aviation since its constrained supply and positive carbon intensity score. Pathway’s ultra carbon-negative fuel is synthetic drop-in jet fuel that achieves a 550% reduction of carbon compared to traditional jet fuel, which is an industry first. Pathway believes this can abate as much as 6,000 flights a year.

Pathway uses an ultra-negative SAF, which carriers require less SAF to achieve emissions reduction as HEFA, which translates to emissions reduction, and lower cost of operations. The aviation industry can potentially achieve up to 8 times more emissions reductions compared to HEFA SAF.

“We saw the opportunity to provide carriers a pathway to completely decarbonize their flights with our net zero blended fuel," Joshua Pearson, Pathway CTO, adds. "This is a new type of SAF production that is 7-9 (times) more carbon negative than the SAF on the market today and represents the most sustainable, cost efficient and de-risked path to decarbonize global aviation.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

DOE report warns of widespread power blackouts by 2030 amid grid challenges

grid report

Scheduled retirements of traditional power plants, dependence on energy sources like wind and solar, and the growth of energy-gobbling data centers put the U.S. — including Texas — at much greater risk of massive power outages just five years from now, a new U.S. Department of Energy report suggests.

The report says the U.S. power grid won’t be able to sustain the combined impact of plant closures, heavy reliance on renewable energy, and the boom in data center construction. As a result, the risk of power blackouts will be 100 times greater in 2030, according to the report.

“The status quo of more [plant] retirements and less dependable replacement generation is neither consistent with winning the AI race and ensuring affordable energy for all Americans, nor with continued grid reliability … . Absent intervention, it is impossible for the nation’s bulk power system to meet the AI growth requirements while maintaining a reliable power grid and keeping energy costs low for our citizens,” the report says.

Avoiding planned shutdowns of traditional energy plants, such as those fueled by coal and oil, would improve grid reliability, but a shortfall would still persist in the territory served by the Electric Reliability Council of Texas (ERCOT), particularly during the winter, the report says. ERCOT operates the power grid for the bulk of Texas.

According to the report, 104 gigawatts of U.S. power capacity from traditional plants is set to be phased out by 2030. “This capacity is not being replaced on a one-to-one basis,” says the report, “and losing this generation could lead to significant outages when weather conditions do not accommodate wind and solar generation.”

To meet reliability targets, ERCOT would need 10,500 megawatts of additional “perfect” capacity by 2030, the report says. Perfect capacity refers to maximum power output under ideal conditions.

“ERCOT continues to undergo rapid change, and supply additions will have a difficult time keeping up with demand growth,” Brent Nelson, managing director of markets and strategy at Ascend Analytics, a provider of data and analytics for the energy sector, said in a release earlier this summer. “With scarcity conditions ongoing and weather-dependent, expect a volatile market with boom years and bust years.”

Syzygy partners with fellow Houston co. on sustainable aviation fuel facility

SAF production

Houston-based Syzygy Plasmonics has announced a partnership with Velocys, another Houston company, on its first-of-its-kind sustainable aviation fuel (SAF) production project in Uruguay.

Velocys was selected to provide Fischer-Tropsch technology for the project. Fischer-Tropsch technology converts synthesis gas into liquid hydrocarbons, which is key for producing synthetic fuels like SAF.

Syzygy estimates that the project, known as NovaSAF 1, will produce over 350,000 gallons of SAF annually. It is backed by Uruguay’s largest dairy and agri-energy operations, Estancias del Lago, with permitting and equipment sourcing ongoing. Syzygy hopes to start operations by 2027.

"This project proves that profitable SAF production doesn't have to wait on future infrastructure," Trevor Best, CEO of Syzygy Plasmonics, said in a news release. "With Velocys, we're bringing in a complete, modular solution that drives down overall production costs and is ready to scale. Uruguay is only the start."

The NovaSAF 1 facility will convert dairy waste and biogas into drop-in jet fuel using renewable electricity and waste gas via its light-driven GHG e-Reforming technology. The facility is expected to produce SAF with at least an 80 percent reduction in carbon intensity compared to Jet A fuel.

Syzygy will use Velocys’ microFTL technology to convert syngas into high-yield jet fuel. Velocys’ microFTL will help maximize fuel output, which will assist in driving down the cost required to produce synthetic fuel.

"We're proud to bring our FT technology into a project that's changing the game," Matthew Viergutz, CEO of Velocys, added in the release. "This is what innovation looks like—fast, flexible, and focused on making SAF production affordable."

How carbon capture works and the debate about whether it's a future climate solution

Energy Transition

Power plants and industrial facilities that emit carbon dioxide, the primary driver of global warming, are hopeful that Congress will keep tax credits for capturing the gas and storing it deep underground.

The process, called carbon capture and sequestration, is seen by many as an important way to reduce pollution during a transition to renewable energy.

But it faces criticism from some conservatives, who say it is expensive and unnecessary, and from environmentalists, who say it has consistently failed to capture as much pollution as promised and is simply a way for producers of fossil fuels like oil, gas and coal to continue their use.

Here's a closer look.

How does the process work?

Carbon dioxide is a gas produced by burning of fossil fuels. It traps heat close to the ground when released to the atmosphere, where it persists for hundreds of years and raises global temperatures.

Industries and power plants can install equipment to separate carbon dioxide from other gases before it leaves the smokestack. The carbon then is compressed and shipped — usually through a pipeline — to a location where it’s injected deep underground for long-term storage.

Carbon also can be captured directly from the atmosphere using giant vacuums. Once captured, it is dissolved by chemicals or trapped by solid material.

Lauren Read, a senior vice president at BKV Corp., which built a carbon capture facility in Texas, said the company injects carbon at high pressure, forcing it almost two miles below the surface and into geological formations that can hold it for thousands of years.

The carbon can be stored in deep saline or basalt formations and unmineable coal seams. But about three-fourths of captured carbon dioxide is pumped back into oil fields to build up pressure that helps extract harder-to-reach reserves — meaning it's not stored permanently, according to the International Energy Agency and the U.S. Environmental Protection Agency.

How much carbon dioxide is captured?

The most commonly used technology allows facilities to capture and store around 60% of their carbon dioxide emissions during the production process. Anything above that rate is much more difficult and expensive, according to the IEA.

Some companies have forecast carbon capture rates of 90% or more, “in practice, that has never happened,” said Alexandra Shaykevich, research manager at the Environmental Integrity Project’s Oil & Gas Watch.

That's because it's difficult to capture carbon dioxide from every point where it's emitted, said Grant Hauber, a strategic adviser on energy and financial markets at the Institute for Energy Economics and Financial Analysis.

Environmentalists also cite potential problems keeping it in the ground. For example, last year, agribusiness company Archer-Daniels-Midland discovered a leak about a mile underground at its Illinois carbon capture and storage site, prompting the state legislature this year to ban carbon sequestration above or below the Mahomet Aquifer, an important source of drinking water for about a million people.

Carbon capture can be used to help reduce emissions from hard-to-abate industries like cement and steel, but many environmentalists contend it's less helpful when it extends the use of coal, oil and gas.

A 2021 study also found the carbon capture process emits significant amounts of methane, a potent greenhouse gas that’s shorter-lived than carbon dioxide but traps over 80 times more heat. That happens through leaks when the gas is brought to the surface and transported to plants.

About 45 carbon-capture facilities operated on a commercial scale last year, capturing a combined 50 million metric tons of carbon dioxide — a tiny fraction of the 37.8 gigatonnes of carbon dioxide emissions from the energy sector alone, according to the IEA.

It's an even smaller share of all greenhouse gas emissions, which amounted to 53 gigatonnes for 2023, according to the latest report from the European Commission’s Emissions Database for Global Atmospheric Research.

The Institute for Energy Economics and Financial Analysis says one of the world's largest carbon capture utilization and storage projects, ExxonMobil’s Shute Creek facility in Wyoming, captures only about half its carbon dioxide, and most of that is sold to oil and gas companies to pump back into oil fields.

Future of US tax credits is unclear

Even so, carbon capture is an important tool to reduce carbon dioxide emissions, particularly in heavy industries, said Sangeet Nepal, a technology specialist at the Carbon Capture Coalition.

“It’s not a substitution for renewables ... it’s just a complementary technology,” Nepal said. “It’s one piece of a puzzle in this broad fight against the climate change.”

Experts say many projects, including proposed ammonia and hydrogen plants on the U.S. Gulf Coast, likely won't be built without the tax credits, which Carbon Capture Coalition Executive Director Jessie Stolark says already have driven significant investment and are crucial U.S. global competitiveness.