Six companies have joined Greentown Houston, focused on long-duration energy storage systems, 3D solar towers and more. Photo courtesy Greentown Labs.

Greentown Labs announced the six startups to join its Houston community in Q2 of 2025.

The companies are among a group of 13 that joined the climatetech incubator, which is co-located in Houston and Boston, in the same time period. The companies that joined the Houston-based lab specialize in a number of clean energy applications, from long-duration energy storage systems to 3D solar towers.

The new Houston members include:

  • Encore CO2, a Louisiana-based company that converts CO2 into ethanol, acetate, ethylene and other sustainable chemicals through its innovative electrolysis technology
  • Janta Power, a Dallas-based company with proprietary 3D-solar-tower technology that deploys solar power vertically rather than flatly, increasing power and energy generation
  • Licube, an Austin-based company focused on sustainable lithium recovery from underutilized sources using its proprietary and patented electrodialysis technology
  • Newfound Materials, a Houston-based company that has developed a predictive engine for materials R&D
  • Pix Force, a Houston-based company that develops AI algorithms to inspect substations, transmission lines and photovoltaic plants using drones
  • Wattsto Energy, a Houston-based manufacturer of a long-duration-energy-storage system with a unique hybrid design that provides fast, safe, sustainable and cost-effective energy storage at the microgrid and grid levels

Seven other companies will join Greentown Boston's incubator. See the full list here.

Greentown Houston also added five startups to its local lab in Q1. Read more about the companies here.

Meet the newest additions to Greentown Houston. Photo via Greentown Houston

11 clean energy-focused startups join Greentown Houston

ready to grow

There are some new faces at Houston's Greentown Labs location.

The climatetech incubator announced 22 new startup members between its two locations in Boston and Houston joining the facilities this quarter, and 11 have a local presence. Here are the new Houston additions, according to Greentown Labs:

  • A digital tech company, eVillage.io’s software manages the lifecycle of a clean energy project from the very beginning.
  • With its power-to-heat and power-to-power solutions, NOC Energy is focused on decarbonizing industrial heat to reduce emissions and cost.
  • AI company Pix Force uses computer vision, using machine learning, and deep learning techniques to automate the inspection of assets more safely, remotely, and efficiently.
  • Ardent is a process technology company that is developing membrane-based solutions for point-source carbon capture and other chemical separations. The startup is participating in Year 4 of the Carbon to Value Initiative.
  • Also a C2V Initiative Year 4 cohort member, CarbonBlue develops a chemical process that mineralizes and extracts CO2 from water, which then reabsorbs more atmospheric CO2.
  • Maple Materials develops an electrolysis process to convert CO2 into graphite and oxygen. The startup is a Greentown Go alum that’s returning for Year 4 of the C2V Initiative.
  • A C2V Initiative cohort member, Secant Fuel develops a one-step electrocatalytic process that converts flue gas into syngas.
  • Deep Anchor Solutions accelerates renewable energy project adoption, especially in floating offshore wind and other offshore sectors, with its innovative deeply embedded ring anchor.
  • Thiozen’s proprietary chemical waste-to-hydrogen cycle removes hydrogen sulfide from gas streams and generates zero-emission hydrogen.
  • TS-Nano is an energy technology company focused on reducing methane emissions from abandoned wellbores using its patented sealants, monitoring technologies, and blockchain carbon offsets—enabling its partners to achieve their ESG and decarbonization goals.
  • Seabound builds carbon-capture equipment for new and existing ships. The startup is participating in Year 4 of the C2V Initiative.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”