A new generation of technology is making it faster, safer, and more cost-effective to identify CUI. Courtesy photo

Corrosion under insulation (CUI) accounts for roughly 60% of pipeline leaks in the U.S. oil and gas sector. Yet many operators still rely on outdated inspection methods that are slow, risky, and economically unsustainable.

This year, widespread budget cuts and layoffs across the sector are forcing refineries to do more with less. Efficiency is no longer a goal; it’s a mandate. The challenge: how to maintain safety and reliability without overextending resources?

Fortunately, a new generation of technologies is gaining traction in the oil and gas industry, offering operators faster, safer, and more cost-effective ways to identify and mitigate CUI.

Hidden cost of corrosion

Corrosion is a pervasive threat, with CUI posing the greatest risk to refinery operations. Insulation conceals damage until it becomes severe, making detection difficult and ultimately leading to failure. NACE International estimates the annual cost of corrosion in the U.S. at $276 billion.

Compounding the issue is aging infrastructure: roughly half of the nation’s 2.6 million miles of pipeline are over 50 years old. Aging infrastructure increases the urgency and the cost of inspections.

So, the question is: Are we at a breaking point or an inflection point? The answer depends largely on how quickly the industry can move beyond inspection methods that no longer match today's operational or economic realities.

Legacy methods such as insulation stripping, scaffolding, and manual NDT are slow, hazardous, and offer incomplete coverage. With maintenance budgets tightening, these methods are no longer viable.

Why traditional inspection falls short

Without question, what worked 50 years ago no longer works today. Traditional inspection methods are slow, siloed, and dangerously incomplete.

Insulation removal:

  • Disruptive and expensive.
  • Labor-intensive and time-consuming, with a high risk of process upsets and insulation damage.
  • Limited coverage. Often targets a small percentage of piping, leaving large areas unchecked.
  • Health risks: Exposes workers to hazardous materials such as asbestos or fiberglass.

Rope access and scaffolding:

  • Safety hazards. Falls from height remain a leading cause of injury.
  • Restricted time and access. Weather, fatigue, and complex layouts limit coverage and effectiveness.
  • High coordination costs. Multiple contractors, complex scheduling, and oversight, which require continuous monitoring, documentation, and compliance assurance across vendors and protocols drive up costs.

Spot checks:

  • Low detection probability. Random sampling often fails to detect localized corrosion.
  • Data gaps. Paper records and inconsistent methods hinder lifecycle asset planning.
  • Reactive, not proactive: Problems are often discovered late after damage has already occurred.

A smarter way forward

While traditional NDT methods for CUI like Pulsed Eddy Current (PEC) and Real-Time Radiography (RTR) remain valuable, the addition of robotic systems, sensors, and AI are transforming CUI inspection.

Robotic systems, sensors, and AI are reshaping how CUI inspections are conducted, reducing reliance on manual labor and enabling broader, data-rich asset visibility for better planning and decision-making.

ARIX Technologies, for example, introduced pipe-climbing robotic systems capable of full-coverage inspections of insulated pipes without the need for insulation removal. Venus, ARIX’s pipe-climbing robot, delivers full 360° CUI data across both vertical and horizontal pipe circuits — without magnets, scaffolding, or insulation removal. It captures high-resolution visuals and Pulsed Eddy Current (PEC) data simultaneously, allowing operators to review inspection video and analyze corrosion insights in one integrated workflow. This streamlines data collection, speeds up analysis, and keeps personnel out of hazardous zones — making inspections faster, safer, and far more actionable.

These integrated technology platforms are driving measurable gains:

  • Autonomous grid scanning: Delivers structured, repeatable coverage across pipe surfaces for greater inspection consistency.
  • Integrated inspection portal: Combines PEC, RTR, and video into a unified 3D visualization, streamlining analysis across inspection teams.
  • Actionable insights: Enables more confident planning and risk forecasting through digital, shareable data—not siloed or static.

Real-world results

Petromax Refining adopted ARIX’s robotic inspection systems to modernize its CUI inspections, and its results were substantial and measurable:

  • Inspection time dropped from nine months to 39 days.
  • Costs were cut by 63% compared to traditional methods.
  • Scaffolding was minimized 99%, reducing hazardous risks and labor demands.
  • Data accuracy improved, supporting more innovative maintenance planning.

Why the time is now

Energy operators face mounting pressure from all sides: aging infrastructure, constrained budgets, rising safety risks, and growing ESG expectations.

In the U.S., downstream operators are increasingly piloting drone and crawler solutions to automate inspection rounds in refineries, tank farms, and pipelines. Over 92% of oil and gas companies report that they are investing in AI or robotic technologies or have plans to invest soon to modernize operations.

The tools are here. The data is here. Smarter inspection is no longer aspirational — it’s operational. The case has been made. Petromax and others are showing what’s possible. Smarter inspection is no longer a leap but a step forward.

---

Tyler Flanagan is director of service & operations at Houston-based ARIX Technologies.


Under its deal with Occidental, pipeline company Enterprise Products Partners will create a carbon dioxide pipeline system for 1PointFive’s Bluebonnet Sequestration Hub. Photo via 1pointfive.com

Oxy, Enterprise Products Partners to collaborate on carbon dioxide pipeline system for Texas project

coming soon

Occidental Petroleum’s carbon capture, utilization, and sequestration (CCUS) subsidiary has tapped another Houston-based company to develop a carbon dioxide pipeline and transportation network for one of its CCUS hubs.

Under its deal with Occidental, pipeline company Enterprise Products Partners will create a carbon dioxide pipeline system for 1PointFive’s Bluebonnet Sequestration Hub, which will span more than 55,000 acres in Chambers, Liberty, and Jefferson counties. The hub will be able to hold about 1.2 billion metric tons of carbon dioxide. The new pipeline network will be co-located with existing pipelines.

Enterprise Products Partners also will supply fee-based services for transporting CO2 emissions from industrial facilities near the Houston Ship Channel to the Bluebonnet hub.

“This agreement pairs our expertise managing large volumes of CO2 with Enterprise’s decades of midstream experience to bring confidence to industrial customers seeking a decarbonization solution,” Jeff Alvarez, president of 1PointFive’s sequestration business, says in a news release.

The Bluebonnet Sequestration Hub recently received funding from the U.S. Department of Energy (DOE) to help cover development costs.

“This hub is located between two of the largest industrial corridors in Texas so captured CO2 can be efficiently transported and safely sequestered,” Alvarez said in 2023. “Rather than starting from scratch with individual capture and sequestration projects, companies can plug into this hub for access to shared carbon infrastructure.”

Here are some things to know about the situation with the pipeline fire burning just outside of Houston. Photo via Getty Images

What to know about the Houston pipeline fire — how it started, pollution impact, and more

latest update

A pipeline fire that forced hundreds of people to flee their homes in the Houston suburbs burned for a third day Wednesday, with officials saying they don't expect it to be extinguished until sometime Thursday evening.

Officials said residents who had to evacuate would be allowed to return to their homes starting Wednesday evening.

Authorities have offered few details about what prompted the driver of an SUV to hit an aboveground valve on the pipeline on Monday, sparking the blaze.

Here are some things to know about the situation with the pipeline fire:

What caused the fire?

Officials say the underground pipeline, which runs under high-voltage power lines in a grassy corridor between a Walmart and a residential neighborhood in Deer Park, was damaged when the SUV driver left the store's parking lot, entered the wide grassy area and went through a fence surrounding the valve equipment.

Authorities have offered few details on what caused the vehicle to hit the pipeline valve, the identity of the driver or what happened to them. The pipeline company on Wednesday called it an accident. Deer Park officials said preliminary investigations by police and FBI agents found no evidence of a terrorist attack.

Deer Park police won't be able to reach the burned-out vehicle until the flame has been extinguished. Once the area is safe, the department will be able to continue its investigation and confirm specifics, city spokesperson Kaitlyn Bluejacket said in an email Wednesday.

The valve equipment appears to have been protected by a chain-link fence topped with barbed wire. The pipeline's operator has not responded to questions about any other safety protections that were in place.

Who is responsible for the pipeline?

Energy Transfer is the Dallas-based owner of the pipeline, a 20-inch-wide (50-centemeter-wide) conduit that runs for miles through the Houston area.

It carries natural gas liquids through the suburbs of Deer Park and La Porte, both of which are southeast of Houston. Energy Transfer said the fire had diminished overnight and was continuing to “safely burn itself out” on Wednesday.

Energy Transfer also built the Dakota Access Pipeline, which has been at the center of protests and legal battles. The company’s executive chairman, Kelcy Warren, has given millions of dollars in campaign contributions to Republican Texas Gov. Greg Abbott.

What's being done to extinguish the fire?

Energy Transfer said its crews were working Wednesday to install specialized isolation equipment on both sides of the damaged section that will help extinguish the fire.

Once the equipment is installed, which could take several hours of welding, the isolated section of the pipeline will be purged with nitrogen, which will extinguish the fire, company and local officials said. After that, damaged components can be repaired.

“The safest way to manage this process is to let the products burn off,” Energy Transfer said.

Late Wednesday afternoon, Deer Park officials said repair work on the pipeline to help speed up the process to put out the fire wasn't expected to be completed until 6 p.m. on Thursday. Once finished, the fire was anticipated to be extinguished within two to three hours.

How have residents been impacted?

Authorities evacuated nearly 1,000 homes at one point and ordered people in nearby schools to shelter in place. Officials said that starting at 6 p.m. on Wednesday, residents in Deer Park and La Porte who had to evacuate would be allowed to return to their homes. A portion of a highway near the pipeline would remain closed, officials said.

Hundreds of customers lost power. Officials said Wednesday afternoon that only two customers remained without electricity in the Deer Park and La Porte area. Repairs to all of the power distribution lines affected by the fire had been completed.

Deer Park's statement said Energy Transfer was “prioritizing the safety of the community and environment as it implements its emergency response plan.”

“We appreciate the patience and understanding of all residents during this ongoing situation,” Deer Park officials said.

By late Tuesday, about 400 evacuees remained, and some expressed frustration over being forced to quickly flee and not being given any timeline for when they will be able to return.

“We literally walked out with the clothes on our backs, the pets, and just left the neighborhood with no idea where we were going,” said Kristina Reff, who lives near the fire. “That was frustrating.”

What about pollution from the fire?

Energy Transfer and Harris County officials have said that air quality monitoring shows no immediate risk to individuals, despite the huge tower of billowing flame that shot hundreds of feet into the air, creating thick black smoke that hovered over the area.

Houston is the nation’s petrochemical heartland and is home to a cluster of refineries and plants and thousands of miles of pipelines. Explosions and fires are a familiar sight, and some have been deadly, raising recurring questions about industry efforts to protect the public and the environment.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Investors close partial acquisition of Phillips 66 subsidiary with growing EV network

M&A activity

Energy Equation Partners, a London-based investment firm focused on clean energy companies, and New York-based Stonepeak have completed the acquisition of a 65 percent interest in JET Tankstellen Deutschland GmbH, a subsidiary of Houston oil and gas giant Phillips 66.

JET is one of the largest and most popular fuel retailers in Germany and Austria with a rapidly growing EV charging network, according to a news release. It also operates approximately 970 service stations, convenience stores and car washes.

“We are delighted to complete this acquisition and to partner with Stonepeak and Phillips 66 to take JET to the next level,” Javed Ahmed, managing partner of Energy Equation Partners, said in a news release. “This investment reflects EEP’s commitment to investing in established players in the energy sector who have the potential to make a meaningful impact on the energy transition, and we are excited to work alongside the entire JET team, including its dedicated service station operators, to realize this vision.”

The deal values JET at approximately $2.8 billion. Phillips 66 will retain a 35 percent non-operated interest in JET and received about $1.6 billion in pre-tax proceeds.

“Under Phillips 66’s ownership, JET has grown into one of the largest fuel retailers in Germany and Austria," Anthony Borreca, senior managing director and co-head of energy at Stonepeak, added in a news release. "We are excited to join forces with them, as well as Javed and the EEP team, who have long-standing experience investing in and operating retail fuel distribution and logistics globally, to support the next phase of JET’s growth.”

6 must-attend Houston energy events in December 2025

Event Guide

Editor's note: The year is coming to a close, but there are still exciting energy events to attend in Houston this month. Mark your calendar now for pitch days, seminars, networking, and Reuters Energy LIVE 2025.

Dec. 4 — Resiliency & Adaptation Sector Pitch Day

Join innovators, industry leaders, investors, and policymakers as they explore breakthrough climate and energy technologies at Greentown Labs' latest installment of its Sector Pitch Day series, focused on resiliency and adaptation. Hear from Adrian Trömel, Chief Innovation Officer at Rice University; Eric Willman, Executive Director of the Rice WaTER Institute; pitches from 10 Greentown startups; and more.

This event is Thursday, Dec. 4, from 1-3:30 p.m. at the Ion. The Ion Holiday Block Party follows. Register here.

Dec. 8 — Pumps & Pipes Annual Event 2025

The annual gathering brings together cross-industry leaders in aerospace, energy and medicine for engaging discussions and networking opportunities. Connor Grennan, Chief AI Architect at the NYU Stern School of Business, will present this year's keynote address, "Practical Strategies to Increase Productivity." Other sessions will feature leaders from Cena Research Institute, NASA Ames Research Center, ExxonMobil, Southwest Airlines, and more.

This event is Monday, Dec. 8, from 8 a.m.-5 p.m., at TMC Helix Park. Register here.

Dec. 9 — Energy in Action Seminar

The Energy Transition Institute hosts a monthly Energy in Action Seminar focused on the digitization of the global energy transition. This month's topic is "Exploring AI’s Impact on the Fuels & Petrochemicals Industry," featuring speaker Leo Chiang, Senior Director of Corporate Technology at The Lubrizol Corporation. The event includes a one-hour talk followed by an hour of networking.

This event is Dec. 9 from 4-6 pm at the University of Houston.

Dec. 9-10 — Energy LIVE 2025

Energy LIVE is Reuters Events' flagship conference and expo that brings the full energy ecosystem together under one roof in Houston to solve the industry's most urgent commercial and operational challenges. The event will feature 3,000-plus senior executives across three strategic stages, a showcase of 75-plus exhibitors, and six strategic content pillars.

This event is Dec. 9-10 at NRG Park. Register here.

Dec. 11-12 — Fundamentals of The Texas ERCOT Electric Power Market

This two-day seminar provides a comprehensive overview of the structure, function, and current status of the Texas ERCOT ISO. Attendees will gain an understanding of the dynamic Texas wholesale and retail competitive markets, and learn how these markets interface with ERCOT ISO energy auctions and ISO operations. This two-day event will also address the rapidly expanding new market opportunities in Texas renewables, distributed generation, demand response, and demand side management, and more.

This event is Dec. 11-12 at the Courtyard Marriott Houston near the Galleria. Register here.

Dec. 9-11 — AST Conference & Trade Show

The 18th Annual National Aboveground Storage Tank (AST) Conference & Trade Show is the premier event for professionals in storage tank and terminal operations. Join industry leaders and experts for a three-day conference providing regulatory updates, technical insights, hands-on learning, and networking opportunities.

This event is Dec. 9-12 at The Woodlands Waterway Marriott. Register here.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

reduce, recharge, recycle

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.