HEXASpec was founded by Rice Ph.D. candidates Tianshu Zhai and Chen-Yang Lin, who are a part of Lilie’s 2024 Innovation Fellows program. Photo courtesy of Rice

A group of Rice University student-founded companies shared $100,000 of cash prizes at an annual startup competition — and three of those winning companies are focused on sustainable solutions.

Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge, hosted by Rice earlier this month, named its winners for 2024. HEXASpec, a company that's created a new material to improve heat management for the semiconductor industry, won the top prize and $50,000 cash.

Founded by Rice Ph.D. candidates Tianshu Zhai and Chen-Yang Lin, who are a part of Lilie’s 2024 Innovation Fellows program, HEXASpec is improving efficiency and sustainability within the semiconductor industry, which usually consumes millions of gallons of water used to cool data centers. According to Rice's news release, HEXASpec's "next-generation chip packaging offer 20 times higher thermal conductivity and improved protection performance, cooling the chips faster and reducing the operational surface temperature."

A few other sustainability-focused startups won prizes, too. CoFlux Purification, a company that has a technology that breaks down PFAS using a novel absorbent for chemical-free water, won second place and $25,000, as well as the Audience Choice Award, which came with an additional $2,000.

Solidec, a company that's working on a platform to produce chemicals from captured carbon, and HEXASpec won Outstanding Achievement in Climate Solutions Prizes, which came with $1,000.

The NRLC, open to Rice students, is Lilie's hallmark event. Last year's winner was fashion tech startup, Goldie.

“We are the home of everything entrepreneurship, innovation and research commercialization for the entire Rice student, faculty and alumni communities,” Kyle Judah, executive director at Lilie, says in a news release. “We’re a place for you to immerse yourself in a problem you care about, to experiment, to try and fail and keep trying and trying and trying again amongst a community of fellow rebels, coloring outside the lines of convention."

This year, the competition started with 100 student venture teams before being whittled down to the final five at the championship. The program is supported by Lilie’s mentor team, Frank Liu and the Liu Family Foundation, Rice Business, Rice’s Office of Innovation, and other donors

“The heart and soul of what we’re doing to really take it to the next level with entrepreneurship here at Rice is this fantastic team,” Peter Rodriguez, dean of Rice Business, adds. “And they’re doing an outstanding job every year, reaching further, bringing in more students. My understanding is we had more than 100 teams submit applications. It’s an extraordinarily high number. It tells you a lot about what we have at Rice and what this team has been cooking and making happen here at Rice for a long, long time.”

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston clean hydrogen producer teams up with Q&G for series of pilots

piling on pilots

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

Column: Should companies pay for EV chargers for corporate fleets?

guest column

As electric vehicles continue to rise in popularity among corporate fleets, the question of how to best accommodate charging needs for fleet drivers, especially those taking their vehicles home, is becoming increasingly important.

Charging EV fleet vehicles at home can be an excellent strategy to save employees time and cut operational costs. However, many companies hesitate in their take-home EV implementation, mistakenly believing that high-cost level 2 home chargers are a necessity. This misconception can stall the transition to an efficient, cost-effective fleet charging solution.

By taking a thoughtful approach to employees’ individual situations, fleet managers can design a take-home EV program that fits their drivers’ needs and benefits the company’s bottom line in the long run. Here are some essential points to consider:

The viability of level 1 charging for low-mileage drivers

For many fleet drivers, especially those covering less than 10,000 miles annually, the standard level 1 charger that plugs into a 120v (standard) wall outlet and comes with their EV is perfectly adequate. This solution involves no additional hardware costs, mitigates issues when employees leave the company, and reduces corporate liability concerns. The primary advantage of relying on level 1 charging is its simplicity and cost-effectiveness, as it requires no extra investment in charging infrastructure. By leveraging the charging cable provided with the vehicle, companies can minimize their financial outlay while still supporting their employees' charging needs effectively.

Opting for non-networked level 2 chargers for high-mileage drivers

For higher mileage drivers with faster charging needs, a non-networked level 2 charger represents a compelling option. In this scenario, the employee pays for the unit and the installation and is then reimbursed by the company. This approach has several benefits:

  • Tax Rebates and Incentives. Employees may qualify for various tax writeoffs and incentives that are not available to companies, making the installation of a level 2 charger more affordable.
  • Ownership and Choice. Employees select and own the charging port, choose the contractor and pay for installation, which limits corporate liability and cuts costs.
  • Home Value Enhancement. Installing a level 2 charger can increase the value of the employee's home, providing them with an additional benefit and easy access to charging.
  • Accurate Reimbursement Still Possible. Modern electric vehicles record charging data, eliminating the need to get this information from a smart charger. Software like ReimburseEV can connect the dots and calculate accurate usage, costs and reimbursement.

This approach offers a cost-effective, lower-liability solution that benefits both the company and the employee, making it an attractive option for higher-mileage drivers.

The drawbacks of company-owned and networked chargers

Installing company-owned chargers, especially networked ones, is arguably the least favorable option for several reasons:

  1. Increased costs and liability: The installation and maintenance of networked chargers significantly increases costs. Moreover, owning the charging infrastructure introduces liability concerns, especially regarding data security.
  2. Connectivity and compatibility Issues: Networked chargers can suffer from connectivity issues, leading to inaccurate charging data and other operating and compliance problems.
  3. Risk of fraud: Many smart chargers do not know which vehicle is plugged in. Thus, they also risk being used by non-fleet vehicles, further complicating cost and energy management.
  4. Brand lock-in: A number of networked chargers are tied to specific OEM brands, limiting the flexibility in vehicle selection and potentially locking the company into a less dynamic fleet vehicle mix.

The drawbacks associated with company-owned and networked chargers underline the importance of evaluating charging needs carefully and opting for solutions that offer flexibility, reduce liability, and control costs.

Decision tree for fleet managers

Fleet managers should consider a decision tree approach to determine the most suitable charging solution for their needs. This decision-making process involves assessing the annual mileage of fleet drivers, access to charging, the benefits of tax incentives, and considering the long-term implications of charger ownership and ongoing liabilities. By adopting a thoughtful, structured approach to at-home charging decision-making, fleet managers can identify the most cost-effective and efficient charging solutions that align with their company's operational goals, culture, and drivers' needs.

Transitioning to an EV fleet and providing robust at-home charging solutions for your EV fleet drivers need not be a big operational bottleneck requiring huge investments in home charging infrastructure and installation costs. By understanding the specific operational demands of your EV fleet vehicles and the unique circumstances of your EV fleet drivers, companies can implement effective, efficient at-home charging solutions that save time, reduce costs, and minimize liability, all while supporting employees' transition to electric mobility.

–––

David Lewis is the founder and CEO of MoveEV, an AI-powered EV transition company that helps organizations convert fleet and employee-owned gas vehicles to electric by accurately reimbursing for charging electric vehicles at home.

Houston renewable energy developer teams up with global commercial real estate biz

collaboration station

Houston-based Catalyze, a developer of independent power systems, has teamed up with commercial real estate services powerhouse Cushman & Wakefield to expand installation of solar panels and battery storage technology at U.S. commercial and industrial properties.

The two companies say the partnership will help owners and tenants of office buildings, warehouses, and other commercial properties reduce utility costs, boost operating income, achieve environmental goals and ease stress on the power grid.

“This partnership marks a significant step forward in our mission to accelerate the adoption of renewable energy among commercial and industrial customers, benefiting both tenants and building owners,” Jared Haines, CEO of Catalyze, says in a news release.

The partnership will enable Cushman & Wakefield to decrease greenhouse gas emissions at facilities it manages for clients as well as its own corporate offices. The real estate sector accounts for about 40 percent of greenhouse gas emissions around the world.

“Our strategic partnership with Catalyze is a testament to our shared commitment to decarbonize the built environment by being at the forefront of the clean energy revolution,” says Jessica Francisco, Cushman & Wakefield’s chief sustainability officer. “Together, we are poised to advance the adoption of solar and storage technologies while driving down costs for our clients.”

In May, Catalyze announced that it secured $100 million in financing from NY Green Bank to support a 79 megawatt portfolio of community distributed generation solar projects across the state of New York.