Don Frieden of P97 shares his thoughts on the future of payment technology amid the energy transition. Photo courtesy of P97

Whether you fuel up your car at the pump or a plug, you need to pay for it. One venture-backed Houston company is dedicated to optimizing that transaction process.

P97 was founded in 2012 to upgrade gas station payments — something that had remained stagnant since around 1997 with the card reader. Don Frieden, CEO and president at the company, thought more can be improved in this process and other daily transactions.

He shared his vision for the company — past, present, and future — on the Houston Innovators Podcast, as well as how he sees the relationship between fintech and the energy transition.



Tell me about the founding mission you had for P97 and the current technologies you're working on.


Don Frieden: P97 is my second software startup — both Houston-based companies. The first one was back in the late '90s, and we were leveraging technology to enable workforce automation and decisions for technology. I mentioned that just because it's relevant because fast forward, and that business was required by public traded company in 2008 and some of our learnings were about payments of gas technology, which led us to start this business.

With P97, our mission from the beginning was simplifying and energizing daily journeys. We think about daily journeys from the time we leave home in the morning and when we get back at the end of the day — whether it's tolling, parking, buying fuel, fast food restaurants, it's all a part of your daily journeys, and our goal is to make things a little bit simpler each day.

There hadn't been any payment innovation from the late '90s, and that was contactless payment at the gas pump, but nothing more until we started the business in 2012. Part of the reason the company name is P97 is because we wanted to innovate around payments since we really hadn't seen anything innovative since 1997.

One of the things we’re most excited about is voice enable payments through our partnership with Amazon's Alexa. The landscape of payments at gas stations underwent this next revolution, and we're using cutting-edge speech recognition and artificial intelligence to allow drivers to pay for fuel just using their voice. It makes the process faster and more efficient, and is completely hands-free. From this time I say, “Alexa, buy gas,” six seconds later, the gas would be turned on and any loyalty rewards I have would be applied, all from the comfort of my car.

How is P97 set up to address the energy transition and the new fuel sources coming out of it?


DF: The good news is about fuel is it's a process of filling up a vehicle — whether it's with a EV charge or whether you're putting hydrogen in the tank. We run one of the largest hydrogen networks in California now. Or, it’s just traditional fuel selling in gallons. The biggest challenge really is integrating all of those different use cases into mobile apps so families can have a wide variety of ways to to fuel their vehicles of wide variety of ways to pay for that fuel — all in one really frictionless experience.

How do you see Houston as a hub for your company as well as an energy transition leader?


DF: Houston is pretty much the energy capital of the world, so from from a partnership and client perspective, life is really easy in Houston right because we have so many major energy companies represented here, but we're not exactly a tech hub. Hiring in Houston has been a bit of a challenge. We have to sometimes hire people out of California and relocate them to Houston. Because of the high quality of life in Houston, we have been able to relocate people here and hire the very best talent.

The reality is that all these energy companies have now recognized the energy transition. Early on, electric vehicles were not overly popular, but now I think we all embrace the importance of climate change and zero hydrocarbon footprint. I think the last 24 months have seen really a major change in embracing everything from wind to solar to supporting the electrification of transportation. You've seen major investments by energy companies acquiring technology companies that can help them accelerate as they make the transition. It was maybe a little bit slow going early on, but the last couple of years, we've just watched it really accelerate. I think also with the US Government getting behind the Infrastructure Bill and putting programs out there to help companies transition has really also helped accelerate this process.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”

Expert examines how far Texas has come in energy efficiency

Guest Column

Texas leads the nation in energy production, providing about one-fourth of the country’s domestically produced primary energy. It is also the largest energy-consuming state, accounting for about one-seventh of the nation’s total energy use, and ranks sixth among the states in per capita energy consumption.

However, because Texas produces significantly more energy than it consumes, it stands as the nation’s largest net energy supplier. October marked National Energy Awareness Month, so this is an ideal time to reflect on how far Texas has come in improving energy efficiency.

Progress in Clean Energy and Grid Resilience

Texas continues to lead the nation in clean energy adoption and grid modernization, particularly in wind and solar power. With over 39,000 MW of wind capacity, Texas ranks first in the country in wind-powered electricity generation, now supplying more than 10% of the state’s total electricity.

This growth was significantly driven by the Renewable Portfolio Standard (RPS), which requires utility companies to produce new renewable energy in proportion to their market share. Initially, the RPS aimed to generate 10,000 MW of renewable energy capacity by 2025. Thanks to aggressive capacity building, this ambitious target was reached much earlier than anticipated.

Solar energy is also expanding rapidly, with Texas reaching 16 GW of solar capacity as of April 2024. The state has invested heavily in large-scale solar farms and supportive policies, contributing to a cleaner energy mix.

Texas is working to integrate both wind and solar to create a more resilient and cost-effective grid. Efforts to strengthen the grid also include regulatory changes, winterization mandates, and the deployment of renewable storage solutions.

While progress is evident, experts stress the need for continued improvements to ensure grid reliability during extreme weather events, when we can’t rely on the necessities for these types of energy sources to thrive. To put it simply, the sun doesn’t always shine, and the wind doesn’t always blow.

Federal Funding Boosts Energy Efficiency

In 2024, Texas received $22.4 million, the largest share of a $66 million federal award, from the U.S. Department of Energy’s Energy Efficiency Revolving Loan Fund Capitalization Grant Program.

The goal of this funding is to channel federal dollars into local communities to support energy-efficiency projects through state-based loans and grants. According to the DOE, these funds can be used by local businesses, homeowners, and public institutions for energy audits, upgrades, and retrofits that reduce energy consumption.

The award will help establish a new Texas-based revolving loan fund modeled after the state’s existing LoanSTAR program, which already supports cost-effective energy retrofits for public facilities and municipalities. According to the Texas Comptroller, as of 2023, the LoanSTAR program had awarded more than 337 loans totaling over $600 million.

In addition to expanding the revolving loan model, the state plans to use a portion of the DOE funds to offer free energy audit services to the public. The grant program is currently under development.

Building on this momentum, in early 2025, Texas secured an additional $689 million in federal funding to implement the Home Energy Performance-Based, Whole House (HOMES) rebate program and the Home Electrification and Application Rebate (HEAR) program.

This investment is more than five times the state’s usual energy efficiency spending. Texas’s eight private Transmission and Distribution Utilities typically spend about $110 million annually on such measures. The state will have multiple years to roll out both the revolving loan and rebate programs.

However, valuable federal tax incentives for energy-efficient home improvements are set to expire on December 31, 2025, including:

  • The Energy Efficiency Home Improvement Credit allows homeowners to claim up to $3,200 per year in federal income tax credits, covering 30% of the cost of eligible upgrades, such as insulation, windows, doors, and high-efficiency heating and cooling systems.
  • The Residential Clean Energy Credit provides a 30% income tax credit for the installation of qualifying clean energy systems, including rooftop solar panels, wind turbines, geothermal heat pumps, and battery storage systems.

As these incentives wind down, the urgency grows for Texas to build on the positive gains from the past several years despite reduced federal funding. The state has already made remarkable strides in clean energy production, grid modernization, and energy-efficiency investments, but the path forward requires a strategic and inclusive approach to energy planning. Through ongoing state-federal collaboration, community-driven initiatives, and forward-looking policy reforms, Texas can continue its progress, ensuring that future energy challenges are met with sustainable and resilient solutions.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.