Texas is positioned to be a great state for the EV industry. Photo by Kindel Media/Pexels

As Texans adopt electric vehicles, significant strides must be made to ensure public charging meets demand. Steps are being made under the National Electric Vehicle Infrastructure Formula Program to address such needs. With new developments promising to bolster the state's infrastructure, it’s only a matter of time until all EV owners will have access to reliable and fast charging options.

NEVI Funding in Texas

Texans will benefit from NEVI funding. This federal initiative is part of a broader effort to enhance EV adoption by providing drivers with a robust and reliable network of fast chargers, particularly along corridors, i.e., highways between Houston, Dallas, Austin, San Antonio, etc. To date, Texas has been busy installing 66 fast-charging ports along those key corridors with much more to come (Electrify News Site). There are multiple phases associated with NEVI, and the first 50 sites outlined by the Texas Electric Vehicle Infrastructure Plan have been completed.

Enhanced Accessibility and Convenience

One of the key aspects of the NEVI-funded stations is their strategic placement in areas previously underserved by existing charging networks. This focus not only addresses range anxiety but also ensures a minimum of four chargers per site with a reliability standard of 97 percent uptime. Such strategic deployment is crucial for supporting the widespread use of electric vehicles, especially in a state as vast as Texas (Electrify News Site).

NACS Compatibility and Adapters: Bridging the Gap

To further support all EV drivers, Tesla has opened their previously closed charging network. This network’s charging system is known as the North American Charging Standard, or NACS. This will allow for other brands to leverage the largest and most reliable charging network in Texas and beyond. Now, just about every manufacturer has opted in to the NACS charging ecosystem. This standard will undoubtedly result in more coverage for all EV drivers and a true standard for the industry. You can see the list of manufacturers that have adopted NACS thus far here.

If you already drive a non-Tesla EV, don’t worry. Many manufacturers have embarked upon developing an adapter for you such as Ford. If you drive a Tesla, your options will remain more or less the same. You’ll not need an adapter with future fast charging stations.

At the end of 2023, there were roughly 19,000 Tesla Superchargers and 15,000 from the entirety of the charging community. Tesla aims to add another 7,500 by the end of 2024 in addition to $7.5B from the federal government to support all other charging initiatives.

This move is particularly beneficial for Texas, where the distances between charging stations can be vast. By enabling access to Tesla's superchargers, drivers can embark on long road trips with the assurance that a fast and reliable charging option is never far away. This increased accessibility will likely spur greater EV adoption, as drivers gain confidence in the state's charging infrastructure.

Charging at Home

The concept of fueling and charging EVs at home offers an exciting paradigm shift. Drivers often have to wait for their cars to approach Empty “E” on their dashboard. Some take it all the way down to the red line (or below) while others begin searching for gas stations once they’ve reached a quarter tank.

With EVs however, the average Houstonian who drives ~30 miles a day now has the potential to begin their day with a full charge. Those who have access to home charging can plug their cars in when they get home from work and typically make up for their daily driving/commute with a standard power outlet which offers a customer anywhere from 30-40 miles of charger over a 12 hour period.

But let’s say you’re a super commuter - someone who drives 75 miles a day or more! Starting off with a full charge every day is almost a necessity, and a standard power outlet may not cut it. Luckily, Level 2 chargers exist and serve as an incredible time and money saver. Like the average commuter, a super commuter can simply plug in a level 2 charger, and the EV will be back to full by the time they wake the next morning (offering anywhere from 20-30 miles of charge per hour). Even those who drive 150+ miles a day can confidently use their EVs as a daily driver if they have a Level 2 charger at home.

Embracing the Future

As we look to the future of transport and energy, the synergy between NEVI and Tesla’s network should create a compelling narrative for those thinking about leasing an EV. Combine that with exciting new battery tech and potential range improvements, fueled by West Texas wind and solar, Texas is positioned to be a great state for the EV industry.

———

Chris George is the United States co-lead at Octopus Electric Vehicles.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown and partners name 10 startups to carbontech accelerator

new cohort

The Carbon to Value Initiative (C2V Initiative)—a collaboration between Greentown Labs, NYU Tandon School of Engineering's Urban Future Lab and Fraunhofer USA—has announced 10 startup participants to join the fifth cohort of its carbontech accelerator.

The six-month accelerator aims to help cleantech startups advance their commercialization efforts through access to the C2V Initiative’s Carbontech Leadership Council (CLC). The invitation-only council consists of corporate and nonprofit leaders from organizations like Shell, TotalEnergies, XPRIZE, L’Oréal and others who “foster commercialization opportunities and identify avenues for technology validation, testing, and demonstration,” according to a release from Greentown

“The No. 1 reason startups engage with Greentown is to find customers, grow their businesses, and accelerate impact—and the Carbon to Value Initiative delivers exactly that,” Georgina Campbell Flatter, CEO of Greentown, said in a news release. “It’s a powerful example of how meaningful engagement between entrepreneurs and industry turns innovation into commercial traction.”

The C2V Initiative received more than 100 applications from 33 countries, representing a variety of carbontech innovations. The 10 startups chosen for the 2025 fifth cohort include:

  • Cambridge, Massachusetts-based Sora Fuel, which integrates direct-air capture with direct conversion of the captured carbon into syngas for production of sustainable aviation fuel
  • Brooklyn-based Arbon, which develops a humidity-swing carbon-capture solution by capturing CO₂ from the air or point-source without heat or pressure
  • New York-based Cella Mineral Storage, which works to develop subsurface mineralization technology with integrated software, enabling new ways to sequester CO2 underground
  • Germany-based ICODOS, which helps transform emissions into value through a point-source carbon capture and methanol synthesis process in a single, modularized system
  • Vancouver-based Lite-1, which uses advanced biomanufacturing processes to produce circular colourants for use in textiles, cosmetics and food
  • London-based Mission Zero Technologies, which has developed and deployed an electrified, direct-air carbon capture solution that employs both liquid-adsorption and electrochemical technologies
  • Kenya-based Octavia Carbon, which develops a solid-adsorption-based, direct-air carbon capture solution that utilizes geothermal heat
  • California-based Rushnu, which combines point-source carbon capture with chemical production, turning salt and CO2 into chlorine-based chemicals and minerals
  • Brooklyn-based Turnover Labs, which develops modular electrolyzers that transform raw, industrial CO2 emissions into chemical building blocks, without capture or purification
  • Ontario-based Universal Matter, which develops a Flash Joule Heating process that converts carbon waste such as end-of-life plastics, tires or industrial waste into graphene

The C2V Initiative is based on Greentown Go, Greentown’s open-innovation program. The C2V Initiative has supported 35 startups that have raised over $600 million in follow-on funding.

Read about the 2024 cohort here.

CenterPoint gets go-ahead for $2.9B upgrade of Houston grid

grid resiliency

Texas utility regulators have given the green light for Houston-based CenterPoint Energy to spend $2.9 billion on strengthening its Houston-area electric grid to better withstand extreme weather.

The cost of the plan is nearly $3 billion below what CenterPoint initially proposed to the Public Utility Commission of Texas.

In early 2025, CenterPoint unveiled a $5.75 billion plan to upgrade its Houston-area power system from 2026 through 2028. But the price tag dropped to $2.9 billion as part of a legal settlement between CenterPoint and cities in the utility’s service area.

Sometime after the first quarter of next year, CenterPoint customers in the Houston area will pay an extra $1 a month for the next three years to cover costs of the resiliency plan. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

CenterPoint says the plan is part of its “commitment to building the most resilient coastal grid in the country.”

A key to improving CenterPoint’s local grid will be stepping up management of high-risk vegetation (namely trees), which ranks as the leading cause of power outages in the Houston area. CenterPoint says it will “go above and beyond standard vegetation management by implementing an industry-leading three-year trim cycle,” clearing vegetation from thousands of miles of power lines.

The utility company says its plan aims to prevent Houston-area power outages in case of hurricanes, floods, extreme temperatures, tornadoes, wildfires, winter storms, and other extreme weather events.

CenterPoint says the plan will:

  • Improve systemwide resilience by 30 percent
  • Expand the grid’s power-generating capacity. The company expects power demand in the Houston area to grow 2 percent per year for the foreseeable future.
  • Save about $50 million per year on storm cleanup costs
  • Avoid outages for more than 500,000 customers in the event of a disaster like last year’s Hurricane Beryl
  • Provide 130,000 stronger, more storm-resilient utility poles
  • Put more than 50 percent of the power system underground
  • Rebuild or upgrade more than 2,200 transmission towers
  • Modernize 34,500 spans of underground cables

In the Energy Capital of the World, residents “expect and deserve an electric system that is safe, reliable, cost-effective, and resilient when they need it most. We’re determined to deliver just that,” Jason Wells, president and CEO of CenterPoint, said in January.

Solidec partners with Australian company for clean hydrogen peroxide pilot​

rare earth pilot

Solidec has partnered with Australia-based Lynas Rare Earth, an environmentally responsible producer of rare earth oxides and materials, to reduce emissions from hydrogen peroxide production.

The partnership marks a milestone for the Houston-based clean chemical manufacturing startup, as it would allow the company to accelerate the commercialization of its hydrogen peroxide generation technology, according to a news release.

"This collaboration is a major milestone for Solidec and a catalyst for sustainability in rare earths," Yang Xia, co-founder and CTO of Solidec, said in the release. "Solidec's technology can reduce the carbon footprint of hydrogen peroxide production by up to 90%. By combining our generators with the scale of a global leader in rare earths, we can contribute to a more secure, sustainable supply of critical minerals."

Through the partnership, Solidec will launch a pilot program of its autonomous, on-site generators at Lynas's facility in Australia. Solidec's generators extract molecules from water and air and convert them into carbon emission-free chemicals and fuels, like hydrogen peroxide. The generators also eliminate the need for transport, storage and permitting, making for a simpler, more efficient process for producing hydrogen peroxide than the traditional anthraquinone process.

"Hydrogen peroxide is essential to rare earth production, yet centralized manufacturing adds cost and complexity," Ryan DuChanois, co-founder and CEO of Solidec, added in the release. "By generating peroxide directly on-site, we're reinventing the chemical supply chain for efficiency, resilience, and sustainability."

The companies report that the pilot is expected to generate 10 tons of hydrogen peroxide per year.

If successful, the pilot would serve as a model for large-scale deployments of Solidec's generators across Lynas' operations—and would have major implications for the high-performance magnet, electric vehicles, wind turbine, and advanced electronics industries, which rely on rare earth elements.

"This partnership with Solidec is another milestone on the path to achieving our Towards 2030 vision," Luke Darbyshire, general manager of R&I at Lynas, added. "Working with Solidec allows us to establish transformative chemical supply pathways that align with our innovation efforts, while contributing to our broader vision for secure, sustainable rare earth supply chains."