Texas is positioned to be a great state for the EV industry. Photo by Kindel Media/Pexels

As Texans adopt electric vehicles, significant strides must be made to ensure public charging meets demand. Steps are being made under the National Electric Vehicle Infrastructure Formula Program to address such needs. With new developments promising to bolster the state's infrastructure, it’s only a matter of time until all EV owners will have access to reliable and fast charging options.

NEVI Funding in Texas

Texans will benefit from NEVI funding. This federal initiative is part of a broader effort to enhance EV adoption by providing drivers with a robust and reliable network of fast chargers, particularly along corridors, i.e., highways between Houston, Dallas, Austin, San Antonio, etc. To date, Texas has been busy installing 66 fast-charging ports along those key corridors with much more to come (Electrify News Site). There are multiple phases associated with NEVI, and the first 50 sites outlined by the Texas Electric Vehicle Infrastructure Plan have been completed.

Enhanced Accessibility and Convenience

One of the key aspects of the NEVI-funded stations is their strategic placement in areas previously underserved by existing charging networks. This focus not only addresses range anxiety but also ensures a minimum of four chargers per site with a reliability standard of 97 percent uptime. Such strategic deployment is crucial for supporting the widespread use of electric vehicles, especially in a state as vast as Texas (Electrify News Site).

NACS Compatibility and Adapters: Bridging the Gap

To further support all EV drivers, Tesla has opened their previously closed charging network. This network’s charging system is known as the North American Charging Standard, or NACS. This will allow for other brands to leverage the largest and most reliable charging network in Texas and beyond. Now, just about every manufacturer has opted in to the NACS charging ecosystem. This standard will undoubtedly result in more coverage for all EV drivers and a true standard for the industry. You can see the list of manufacturers that have adopted NACS thus far here.

If you already drive a non-Tesla EV, don’t worry. Many manufacturers have embarked upon developing an adapter for you such as Ford. If you drive a Tesla, your options will remain more or less the same. You’ll not need an adapter with future fast charging stations.

At the end of 2023, there were roughly 19,000 Tesla Superchargers and 15,000 from the entirety of the charging community. Tesla aims to add another 7,500 by the end of 2024 in addition to $7.5B from the federal government to support all other charging initiatives.

This move is particularly beneficial for Texas, where the distances between charging stations can be vast. By enabling access to Tesla's superchargers, drivers can embark on long road trips with the assurance that a fast and reliable charging option is never far away. This increased accessibility will likely spur greater EV adoption, as drivers gain confidence in the state's charging infrastructure.

Charging at Home

The concept of fueling and charging EVs at home offers an exciting paradigm shift. Drivers often have to wait for their cars to approach Empty “E” on their dashboard. Some take it all the way down to the red line (or below) while others begin searching for gas stations once they’ve reached a quarter tank.

With EVs however, the average Houstonian who drives ~30 miles a day now has the potential to begin their day with a full charge. Those who have access to home charging can plug their cars in when they get home from work and typically make up for their daily driving/commute with a standard power outlet which offers a customer anywhere from 30-40 miles of charger over a 12 hour period.

But let’s say you’re a super commuter - someone who drives 75 miles a day or more! Starting off with a full charge every day is almost a necessity, and a standard power outlet may not cut it. Luckily, Level 2 chargers exist and serve as an incredible time and money saver. Like the average commuter, a super commuter can simply plug in a level 2 charger, and the EV will be back to full by the time they wake the next morning (offering anywhere from 20-30 miles of charge per hour). Even those who drive 150+ miles a day can confidently use their EVs as a daily driver if they have a Level 2 charger at home.

Embracing the Future

As we look to the future of transport and energy, the synergy between NEVI and Tesla’s network should create a compelling narrative for those thinking about leasing an EV. Combine that with exciting new battery tech and potential range improvements, fueled by West Texas wind and solar, Texas is positioned to be a great state for the EV industry.

———

Chris George is the United States co-lead at Octopus Electric Vehicles.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston energy expert looks ahead to climate tech trends of 2026

Guest Column

There is no sugar‑coating it: 2025 was a rough year for many climate tech founders. Headlines focused on policy rollbacks and IRA uncertainty, while total climate tech venture and growth investment only inched up to about 40.5 billion dollars, an 8% rise that felt more like stabilization than the 2021–2022 boom. Deal count actually fell 18% and investor participation dropped 19%, with especially steep pullbacks in carbon and transportation, as capital concentrated in fewer, larger, “safer” bets. Growth-stage funding jumped 78% while early-stage seed rounds dropped 20%.

On top of that, tariff battles and shifting trade rules added real supply‑chain friction. In the first half of 2025, solar and wind were still 91% of new U.S. capacity additions, but interconnection delays, equipment uncertainty, and changing incentive structures meant many projects stalled or were repriced mid‑stream. Founders who had raised on 2021‑style valuations and policy optimism suddenly found themselves stuck in limbo, extending runway or shutting down.

The bright spots were teams positioned at the intersection of climate and the AI power surge. Power demand from data centers is now a primary driver of new climate‑aligned offtake, pulling capital toward firm, 24/7 resources. Geothermal developers like Fervo Energy, Sage Geosystems and XGS did well. Google’s enhanced‑geothermal deal in Nevada scales from a 3.5 MW pilot to about 115 MW under a clean transition tariff, nearly 30× growth in geothermal capacity enabled by a single corporate buyer. Meta and others are exploring similar pathways to secure round‑the‑clock low‑carbon power for hyperscale loads.

Beyond geothermal, nuclear is clearly back on the strategic menu. In 2024, Google announced the first U.S. corporate nuclear offtake, committing to purchase 500 MW from Kairos Power’s SMR fleet by 2035, a signal that big tech is willing to underwrite new firm‑power technologies when the decarbonization and reliability story is compelling. Meta just locked in 6.6GW of nuclear capacity through deals with Vistra, Oklo, and TerraPower.

Growth investors and corporates are increasingly clustering around platforms that can monetize long‑duration PPAs into data‑center demand rather than purely policy‑driven arbitrage.

Looking into 2026, the same trends will continue:

Solar and wind

Even with policy headwinds, solar and wind continue to dominate new capacity. In the first half of 2025 they made up about 90% of new U.S. electricity capacity. Over the 2025–2028 period, FERC’s ‘high‑probability’ pipeline points to on the order of 90–93 GW of new utility‑scale solar and roughly 20–23 GW of new wind, far outpacing other resources.

Storage and flexibility

Solar plus batteries is now the default build—solar and storage together account for about 81% of expected 2025 U.S. capacity additions, with storage deployments scaling alongside renewables to keep grids flexible. Thermal storage and other grid‑edge flexibility solutions are also attracting growing attention as ways to smooth volatile load.

EVs and transport

EV uptake continues to anchor long‑term battery demand; while transportation funding cooled in 2025, EV sales and charging build‑out are still major components of clean‑energy demand‑side investment

Buildings

Heat pumps, smart HVAC, and efficient water heating are now the dominant vectors for building‑sector decarbonization. Heating and cooling startups alone have raised billions since 2020, with nearly 700 million dollars going into HVAC‑focused companies in 2024, and that momentum carried into 2025.

Hydrogen

The green hydrogen narrative has faded, but analysts still see hydrogen as essential for steel, chemicals, and other hard‑to‑abate sectors, with large‑scale projects and offtake frameworks under development rather than headline hype.

CCS/CCUS

After years of skepticism, more large CCS projects are finally reaching FID and coming online, helped by a mix of tax credits and industrial demand, which makes CCS look more investable than it did in the pre‑IRA era.

So, yes, 2025 was a downer from the easy‑money, policy‑euphoria years. But the signal beneath the noise is clear: capital is rotating toward technologies with proven unit economics, real offtake (especially from AI‑driven power loads), and credible paths to scale—not away from climate altogether.

---

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus.

Houston startup advances methane tech, sets sights on growth capital

making milestones

Houston-based climatech startup Aquanta Vision achieved key milestones in 2025 for its enhanced methane-detection app and has its focus set on future funding.

Among the achievements was the completion of the National Science Foundation’s Advanced Sensing and Computation for Environmental Decision-making (ASCEND) Engine. The program, based in Colorado and Wyoming, awarded a total of $3 million in grants to support the commercialization of projects that tackle critical resilience challenges, such as water security, wildfire prediction and response, and methane emissions.

Aquanta Vision’s funding went toward commercializing its NETxTEN app, which automates leak detection to improve accuracy, speed and safety. The company estimates that methane leaks cost the U.S. energy industry billions of dollars each year, with 60 percent of leaks going undetected. Additionally, methane leaks account for around 10 percent of natural gas's contribution to climate change, according to MIT’s climate portal.

Throughout the months-long ASCEND program, Aquanta Vision moved from the final stages of testing into full commercial deployment of NETxTEN. The app can instantly identify leaks via its physics-based algorithms and raw video output of optical gas imaging cameras. It does not require companies to purchase new hardware, requires no human intervention and is universally compatible with all optical gas imaging (OGI) cameras. During over 12,000 test runs, 100 percent of leaks were detected by NETxTEN’s system, according to the company.

The app is geared toward end-users in the oil and gas industry who use OGI cameras to perform regular leak detection inspections and emissions monitoring. Aquanta Vision is in the process of acquiring new clients for the app and plans to scale commercialization between now and 2028, Babur Ozden, the company’s founder and CEO, tells Energy Capital.

“In the next 16 months, (our goal is to) gain a number of key customers as major accounts and OEM partners as distribution channels, establish benefits and stickiness of our product and generate growing, recurring revenues for ourselves and our partners,” he says.

The company also received an investment for an undisclosed amount from Marathon Petroleum Corp. late last year. The funding complemented follow-on investments from Ecosphere Ventures and Odyssey Energy Advisors.

Ozden says the funds will go toward the extension of its runway through the end of 2026. It will also help Aquanta Vision grow its team.

Ozden and Marcus Martinez, a product systems engineer, founded Aquanta Vision in 2023 and have been running it as a two-person operation. The company brought on four interns last year, but is looking to add more staff.

Ozden says the company also plans to raise a seed round in 2027 “to catapult us to a rapid growth phase in 2028-29.”

HETI discusses Houston’s energy leadership, from pathways to progress

The View From HETI

In 2024, RMI in collaboration with Mission Possible Partnership (MPP) and the Houston Energy Transition Initiative (HETI) mapped out ambitious scenarios for the region’s decarbonization journey. The report showed that with the right investments and technologies, Houston could achieve meaningful emissions reductions while continuing to power the world. That analysis painted a picture of what could be possible by 2030 and 2050.

Today, the latest HETI progress report shows Houston is not just planning anymore — the region is delivering.

Real results, right now

The numbers tell a compelling story. Since 2017, HETI’s member companies have invested more than $95 billion in low-carbon infrastructure, technologies, and R&D. That’s not a commitment for the future—that’s capital deployed, projects built, and operations transformed.

The results showed industry-wide reductions of 20% in total Scope 1 greenhouse gas emissions and a remarkable 55% decrease in methane emissions from global operations. These aren’t projections—they’re actual reductions happening across refineries, chemical plants, and production facilities throughout the Houston region.

How Houston is leading

What makes Houston’s approach work is its practical, technology-driven focus. Companies across the energy value chain are implementing solutions that work today:

  • Electrifying operations and integrating renewable power
  • Deploying advanced methane detection and elimination technologies
  • Upgrading equipment for greater efficiency
  • Capturing and storing carbon at commercial scale
  • Developing breakthrough technologies from geothermal to advanced nuclear

Take ExxonMobil’s Permian Basin electrification, Shell and Chevron’s lower-carbon Whale project, or BP’s massive Tangguh carbon capture project in Indonesia. These aren’t pilot programs—they’re multi-billion dollar investments demonstrating that decarbonization and energy production go hand in hand.

From scenarios to strategy

The RMI analysis identified three key pathways forward: enabling operational decarbonization, accelerating low-carbon technology scale-up, and creating carbon accounting mechanisms. Houston’s energy leaders have embraced all three.

The momentum is undeniable. Companies are setting ambitious 2030 and 2050 targets with clear roadmaps. New projects are reaching final investment decisions. Innovation ecosystems are flourishing. And critically, this progress is creating jobs and driving economic growth across the region.

Why this matters

Houston isn’t just managing the energy transition—it’s proving what’s possible when you combine world-class engineering expertise, integrated infrastructure, access to capital, and a commitment to both energy security and emissions reduction.

The dual challenge of delivering more energy with less emissions isn’t theoretical in Houston—it’s operational reality. Every ton of CO₂ reduced, every efficiency gain achieved, and every technology deployed demonstrates that we can meet growing global energy demand while making measurable progress on climate goals.

The path forward

The journey from last year’s scenarios to this year’s results shows something crucial: when industry, policymakers, and communities align around practical solutions, transformation accelerates.

Houston’s energy leadership isn’t about choosing between reliable energy and environmental progress, it’s about delivering both. And based on the progress we’re seeing, the momentum is only building.

———

Read the full analysis here. This article originally appeared on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.