Memorial Hermann has its eyes to the sky for an upcoming innovative service it's launching in 2026. Photo courtesy of Zipline

A Houston hospital system has announced that it has plans to launch a drone delivery service that will replace traditional car deliveries in 2026.

Memorial Hermann Health System announced that it intends to be the first health care provider in Houston to roll out drone delivery services from San Francisco-based Zipline, a venture capital-backed tech company founded in 2014 that's completed 1 million drone deliveries.

"As a system, we are continuously seeking ways to improve the patient experience and bring greater health and value to the communities we serve. Zipline provides an innovative solution to helping our patients access the medications they need, quickly and conveniently, at no added cost to them," Alec King, executive vice president and CFO for Memorial Hermann, says in a news release.

Zipline boasts of achieving delivery times seven times faster than traditional car deliveries and can usually drop off packages at a rate of a mile a minute. The drones, called Zips, can navigate any weather conditions and complete their missions with zero emissions.

Per the release, the service will be used to deliver medical supplies and prescriptions to patients or supplies or samples between its locations.

"Completing more than one million commercial deliveries has shown us that when you improve health care logistics, you improve every level of the patient experience. It means people get better, faster, more convenient care, even from the comfort of their own home," adds Keller Rinaudo Cliffton, co-founder and CEO of Zipline. "Innovators like Memorial Hermann are leading the way to bring better care to the U.S., and it's going to happen much faster than you might expect."

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

DOE grants $13.7M tax credit to power Houston clean hydrogen project

power move

Permascand USA Inc., a subsidiary of Swedish manufacturing company Permascand, has been awarded a $13.7 million tax credit by the U.S. Department of Energy (DOE) to expand across the country, including a new clean hydrogen manufacturing facility in Houston.

The new Houston facility will manufacture high-performance electrodes from new and recycled materials.

"We are proud to receive the support of the U.S. Department of Energy within their objective for clean energy," Permascand CEO Fredrik Herlitz said in a news release. "Our mission is to provide electrochemical solutions for the global green transition … This proposed project leverages Permascand’s experience in advanced technologies and machinery and will employ a highly skilled workforce to support DOE’s initiative in lowering the levelized cost of hydrogen.”

The funding comes from the DOE’s Qualifying Advanced Energy Project Credit program, which focuses on clean energy manufacturing, recycling, industrial decarbonization and critical materials projects.

The Permascand proposal was one of 140 projects selected by the DOE with over 800 concept papers submitted last summer. The funding is part of $6 billion in tax credits in the second round of the Qualifying Advanced Energy Project Credit program that was deployed in January.

So far credits have been granted to approximately 250 projects across more than 40 states, with project investments over $44 billion dollars, according to the Department of Treasury. Read more here.

Houston researchers reach 'surprising' revelation in materials recycling efforts

keep it clean

Researchers at Rice University have published a study in the journal Carbon that demonstrates how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties.

The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

“Recycling has long been a challenge in the materials industry — metals recycling is often inefficient and energy intensive, polymers tend to lose their properties after reprocessing and carbon fibers cannot be recycled at all, only downcycled by chopping them up into short pieces,” corresponding author Matteo Pasquali, director of Rice’s Carbon Hub and the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering and Chemistry, explained in a news release. “As CNT fibers are being scaled up, we asked whether and how these new materials could be recycled in the future .... We expected that recycling would be difficult and would lead to significant loss of properties. Surprisingly, we found that carbon nanotube fibers far exceed the recyclability potential of existing engineered materials, offering a solution to a major environmental issue.”

Rice researchers used a solution-spun CNT fiber that was created by dissolving fiber-grade commercial CNTs in chlorosulfonic acid, according to Rice. Mixing the two fibers led to complete redissolution and no sign of separation of the two source materials into different liquid phases. This redissolved material was spun into a mixed-source recycled fiber that retained the same structure and alignment, which was unprecedented.

Pasquali explained in a video release that the new material has properties that overlap with and could be a replacement for carbon fibers, kevlar, steel, copper and aluminum.

“This preservation of quality means CNT fibers can be used and reused in demanding applications without compromising performance, thus extending their lifecycle and reducing the need for new raw materials,” co-first author Ivan R. Siqueira, a recent doctoral graduate in Rice’s Department of Chemical and Biomolecular Engineering, said in a news release.

Other co-authors of the paper are Rice graduate alumni Oliver Dewey, now of DexMat; Steven Williams; Cedric Ginestra, now of LyondellBasell; Yingru Song, now a postdoctoral fellow at Purdue University; Rice undergraduate alumnus Juan De La Garza, now of Axiom Space; and Geoff Wehmeyer, assistant professor of mechanical engineering.

The research is part of the broader program of the Rice-led Carbon Hub, an initiative to develop a zero-emissions future. The work was also supported by the Department of Energy’s Advanced Research Project Agency, the Air Force Office of Scientific Research and a number of other organizations.

Pasquali recently led another team of Rice researchers to land a $4.1 million grant to optimize CNT synthesis. The funds came from Rice’s Carbon Hub and The Kavli Foundation. Read more here.

.

.

.