Liangzi Deng (left) and Paul C.W. Chu of the Texas Center for Superconductivity and the Dept. of Physics at the University of Houston received funding for their work. Photo courtesy of UH

Researchers at the Department of Physics at the University of Houston and Texas Center for Superconductivity have received a second-year funding from global leader in business of invention Intellectual Ventures to continue their work on exploring superconductivity,

The project, which is led by Paul C. W. Chu, T.L.L. Temple Chair of Science, professor of physics and founding director of the TcSUH and assistant professor of physics and a new TcSUH principal investigator Liangzi Deng, has been awarded $767,000 to date.

“Working with IV gives us the freedom known for scientific pursuit and at the same time provides intellectual guidance and assistance in accord with the mission goal,” Chu says in a news release.

The researchers are working on making superconductivity easier to achieve. At room temperature and normal atmospheric pressure is where the researchers are looking to simplify superconductivity. One finding from Chu and Deng’s team is called pressure-quench protocol, or PQP.The PQP will help maintain key properties (like superconductivity) in certain materials after the high pressure needed to create them is removed.

“Intellectual Ventures funded this research because Paul Chu is one of the acknowledged thought leaders in the area of superconductivity with a multi-decade track record of scientific innovation and creativity,” Brian Holloway, vice president of IV’s Deep Science Fund and Enterprise Science Fund, adds. “The work led by Chu and Deng on pressure quenching could result in game-changing progress in the field. We are very excited about the preliminary results from the first year and we look forward to continuing this collaboration.”

The project showed early success the first year, as the research used a special system to synthesize materials under high temperatures and pressure. The second-year projects will include the investigation of pressure-induced/enhanced superconductivity in cuprates and hydrides.

“If successful, UH will once again break the record for the highest superconducting Tc at atmospheric pressure,” Deng says in the release. “Additionally, we will collaborate closely with theorists to uncover the mechanism of PQP. Our research has far-reaching implications, with the potential to extend beyond superconductors to other material systems.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Aramco partners to demonstrate compact carbon capture technology for gas turbines

dream team

Integrated energy and chemicals company Aramco has signed a collaboration agreement with Carbon Clean and SAMSUNG E&A in an effort to showcase new carbon capture technology.

The technology demonstration will be used to deploy Carbon Clean’s novel CycloneCC technology to capture CO2 from natural gas turbine exhaust streams containing approximately 4 percent CO2, according to Aramco.

Carbon Clean, which U.S. headquarters are located in Houston at the Ion, boasts technology that has captured nearly two million tons of carbon dioxide at almost 50 sites around the world. Aramco’s U.S. headquarters is also in Houston.

“The potential for CycloneCC in the US and Houston area is huge,” Aniruddha Sharma, chair and CEO of Carbon Clean, previously shared with EnergyCapital. “It is optimised for low to medium scale industrial emitters and recent Rice University research on the US Gulf Coast, for example, found that it is well suited to 73 percent of Gulf Coast emitters.”

The modular CycloneCC unit has a 50 percent smaller footprint compared to conventional carbon capture processes. The CycloneCC technology is estimated to reduce the total installed cost of carbon capture systems by up to 50 percent compared to conventional systems if successful. The goal is to also maintain process efficiency even at low CO2 concentrations. CycloneCC’s performance is achieved through two process intensification technologies, rotating packed beds (RPBs) and Carbon Clean’s proprietary APBS-CDRMax solvent.

“Its compact, modular design should be easily integrated with gas turbines, delivering high performance carbon capture in an industrial setting where space is typically limited,” Sharma says in a news release.

The engineering, procurement and construction of the plant will be done by SAMSUNG E&A .The unit will be installed on the sales gas compressor turbine exhaust gas stack,which can provide performance data under real-world conditions.

“Aramco and Samsung Ventures are investors in Carbon Clean, so we’re proud to deepen our relationship through this partnership,” Sharma adds. “This first-of-a-kind deployment capturing very low concentrations of CO2 is a key milestone in scaling up and commercializing CycloneCC.”

In September, Carbon Clean also announced a deal with PETRONAS CCS Solution to collaborate and evaluate Carbon Clean’s carbon capture and storage technology with Carbon Clean's CycloneCC tech. Last year, Abu Dhabi National Oil Co. (ADNOC) selected Carbon Clean for a carbon capture project in Abu Dhabi.

Houston energy tech company scores spot on Deloitte's list of fast-growing businesses

by the numbers

Deloitte’s annual North America Technology Fast 500 list includes a Houston energy tech company boasting 407 percent growth.

NatGas Hub LLC landed at No. 286 on the list, which is an annual ranking of the fastest-growing North American companies in technology, energy tech sectors, telecommunications, life sciences, media, and fintech. It marks an improvement for the company, which provides an automation software for natural gas nominations and scheduling services. In 2023, the company ranked No. 356 with 364 percent growth.

Direct Digital Holdings Inc. took the highest-ranking spot for Houston companys, coming in at No. 101 (up from 108 previous year) with 1,184 percent growth. Additional Houston companies on the list include Liongard (No. 437, 246 percent growth) and Stratus Medical LLC (No. 483, 212 percent growth).

"Houston continues to demonstrate its prowess in fostering growth and technological advancement and I’m incredibly proud to see some of our local companies making significant strides and earning their well-deserved spots on the 2024 Deloitte Technology Fast 500 list,” Houston managing partner at Deloitte Melinda Yee says in a news release.

Award winners were selected based on fiscal year revenue growth from 2019 to 2022.

The companies achieved revenue growth ranging from 201 percent to 153,625 percent over the three-year time frame with an average growth rate of 1,981 percent and a median growth rate of 460 percent, according to a news release. Texas accounts for 6 percent of the winning companies with 73 percent of the companies from Texas are in the software sector.

“These companies exemplify the entrepreneurial spirit and innovative mindset that define Houston's dynamic business ecosystem,” Yee adds.

In 2023, the Houston representation looked similar. Direct Digital Holdings again topped the Houston rankings at No. 108, with Liongard, NatGasHub.com, and P97 Networks also showing substantial growth. As a state, Texas had 30 companies that made the list of the 541 ranked. In 2022, just one Houston company was recognized, as at No. 372 Onit reported revenue increase of 369 percent.

Biopharmaceutical company TG Therapeutics, Inc. was the No.1 spot in 2024 with a growth rate of 153,625 percent from 2020 to 2023. See the full list here.

———

This article originally ran on InnovationMap.

Houston founder on driving the future of geothermal energy, storage

now streaming

Cindy Taff, co-founder and CEO of Sage GeoSystems, has emerged as a visionary leader in the energy transition, recently named to Time magazine’s 100 Most Influential Climate Leaders in Business for 2024. Under her leadership, Sage is not only advancing geothermal energy innovation but also redefining how energy storage can support a renewable-powered grid.

In a recent Energy Tech Startups Podcast episode, Taff discussed the evolution of Sage GeoSystems, the challenges of scaling hard tech solutions, and the opportunities presented by geothermal and pumped hydro energy storage. Her insights reflect the unique perspective of a founder bridging oil and gas expertise with renewable energy innovation.

- YouTubeCindy shares how Sage Geosystems is leveraging its oil and gas expertise to develop groundbreaking subsurface pumped hydro ...

Breaking Boundaries with Geopressured Geothermal Systems

Sage GeoSystems is at the forefront of next-generation geothermal energy, advancing Geopressured Geothermal Systems (GGS) that can be deployed in a wide range of geographies. Unlike traditional geothermal systems, which rely on natural water reservoirs near volcanic activity, Sage’s engineered reservoirs allow geothermal energy to be tapped almost anywhere.

“Geothermal energy is no longer restricted to specific conditions,” Taff explained. “Our systems are flexible, scalable, and capable of meeting the needs of energy-intensive applications like data centers—including a recent deal with Meta to deliver 150 megawatts of geothermal power for their facilities.”

This adaptability sets Sage apart, offering a path to reliable, clean energy that can complement intermittent sources like wind and solar. Sage also secured a win in the Energy Transition Business category alongside notable finalists like Amperon and Tierra Climate, underscoring its leadership in innovative energy solutions.

Pivoting Toward Subsurface Energy Storage

While initially focused solely on geothermal, Sage uncovered a transformative opportunity in subsurface pumped hydro energy storage during field trials. Dubbed “upside-down pumped hydro,” the solution provides long-duration energy storage capable of balancing the grid for 17+ hours—far surpassing the capabilities of lithium-ion batteries for extended periods.

“Pumped storage hydropower is a critical piece of the energy puzzle,” Taff emphasized. By storing energy during off-peak times and releasing it when solar and wind aren’t producing, Sage is helping bridge the intermittency gap in renewables. This approach positions pumped storage as a game-changer for a reliable, clean energy grid.

Lessons from the Founder’s Journey

Taff’s transition from a 35-year career at Shell to geothermal entrepreneurship offers valuable lessons for founders in capital-intensive industries:

  1. Leverage Expertise, but Stay Open to New Solutions:
    Taff’s oil and gas background enabled her to approach geothermal with deep technical knowledge, but Sage’s pivot to energy storage illustrates the importance of staying adaptable during development.
  2. Educate Financial Stakeholders:
    Securing funding for hard tech remains a challenge. “Investors often lack the subsurface knowledge needed to understand our technology,” Taff explained. She emphasized the need to bring on team members who can translate technical innovation into financial terms.
  3. Be Ready for Capital-Intensive Scaling:
    With geothermal plants costing millions to build, startups must carefully manage capital and timelines. Taff encourages founders to seek strategic investors, like Chesapeake Energy, who understand the challenges and potential of scaling infrastructure.

Beyond Geothermal: A Call for Pumped Storage Hydropower

In addition to geothermal, Taff champions pumped storage hydropower as an underutilized climate solution. “While lithium-ion batteries get a lot of attention, pumped storage hydropower offers long-duration storage that can stabilize the grid for days, not just hours,” she said.

By storing excess energy during off-peak times and releasing it when solar and wind aren’t producing, pumped storage hydropower can play a critical role in balancing renewables. Sage GeoSystems is uniquely positioned to integrate this technology into a broader energy strategy, offering sustainable and scalable solutions for energy-intensive industries.

A Vision for Geothermal and the Energy Transition

Looking ahead, Taff sees geothermal energy and storage as critical components of a sustainable energy mix. “We’re still in the early stages, but geothermal is following a trajectory similar to wind and solar 15 years ago,” she said. Sage’s innovative approaches are paving the way for geothermal to become a scalable, competitive solution, capable of powering industries and data centers while providing energy storage that stabilizes the grid.

With her recognition by Time magazine and a recent deal with Meta, Sage GeoSystems is proving that geothermal energy can be a powerful ally in achieving global decarbonization goals. The company’s innovative Geopressured Geothermal Systems and subsurface storage solutions are laying the groundwork for a reliable and sustainable energy future.

Listen to the full episode with Cindy Taff on the Energy Tech Startups Podcast here.

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.