Advancements in charging technology also play a critical role to EV adoption.

Imagine a world where electric vehicles are as commonplace as smartphones. Not so long ago, this seemed like a distant dream, primarily due to the dreaded “range anxiety.” But today, the landscape is shifting dramatically thanks to a mix of technical advancements and social dynamics.

In 1996, General Motors' EV1 emerged as the first modern-day all-electric vehicle, boasting a modest range of 74 miles – adequate for city driving but limiting for longer trips, especially with public charging stations scarce. For the next 15 years, this narrative was slow to change.

Fast forward to today: The Lucid Air boasts an estimated range of 516 miles, more than the average gasoline-powered car can travel on a single tank. In 2022, the average range of an electric car sold in the U.S. reached 291 miles. By May 2023, more than 138,100 public charging outlets were available nationwide. Despite a concentration of these stations in California, the trend is evident: EVs now offer unprecedented range, complemented by an ever-growing network of charging stations.

Yet, the specter of "range anxiety" lingers. Why?

The answer lies not in statistics or technology but in human behavior. A recent study of new EV registrations in 11 U.S. markets revealed a "cluster effect" in EV adoption. Prospective buyers are often influenced by EV owners within their social circles ― neighbors, family, or colleagues. This phenomenon, sometimes known as peer pressure, social contagion, or the “neighborhood effect,” underscores a simple truth: seeing is believing. In other words, the best predictor of a person driving an EV is someone in their inner circle driving one first. (As an EV driver, my own experience resonates with this finding. Three of my friends switched to EVs after hearing about how much my family was enjoying ours, and how much we were saving.)

The report cited two key factors of peer influence in helping new EV drivers overcome possible sources of anxiety, like range limitations. The first factor ― interpersonal communication and persuasion ― includes observation of specific choices (i.e., a new Tesla in the neighbor’s driveway), word-of-mouth communication, and the influence of trusted community leaders. The second ― normative social influence ― holds that social norms are passively communicated as shared standards of behavior within a group. Even without talking to the neighbor, the sight of their new Tesla suggests that driving one allows you to “fit in” too.

If peer influence helps convince EV buyers that range is no obstacle, charging stations are doing their part to influence cluster buying as well. California had more than 14,000 of the nation’s 51,000 public charging stations as of March and also the highest number of registered EVs. Consumer Reports reported in June that “charging logistics” was the number-1 reason holding back potential EV buyers. It only makes sense that the threat of a broken EV charger or a long stretch of road without one is lessened where more chargers are available. The number of public charging stations has increased by 40 percent since Jan. 2021, and figures to rise further as public- and private-sector investment dollars flow into public charging.

More than the availability of public charging stations, the ability to charge one’s EV at home overnight is a practical antidote to range anxiety. Charging overnight can add 40 to 50 miles of range, enough for an average driver on an average day. A 2022 survey by J.D. Power indicated 27 percent of homeowners are "very likely to consider” buying an EV, compared to 17 percent of those who rent. “Not only are homeowners more affluent, on average,” the report notes, “but are more likely to be able to charge an EV at their residence.”

Here too, the cluster effect makes sense. In areas where renters are concentrated (think apartment complexes), all it takes is one EV driver to inform their neighbors where the nearest charging stations are, eliminating a logistical barrier to range anxiety. In areas where homeowners are concentrated (think new-construction suburban communities of family homes), all it takes is one EV driver to demonstrate the utility of overnight charging in a standard garage or driveway outlet.

Advancements in charging technology also play a critical role. The advent of affordable Level 2 chargers and ultra-fast Level 3 chargers, like Electrify America's 20 miles-per-minute chargers, further eases range concerns.

The availability and affordability of charging technology might be the best weapons in the fight against range anxiety, but they are of little use without a first-hand introduction on the part of someone in your social circle. The key to accelerating EV adoption lies in nurturing these social “clusters,” fostering a network of influence that propels us towards an electrified, sustainable future. In this journey, our greatest allies are the conversations in our living rooms, the examples in our driveways, and the shared experiences within our communities. As these clusters expand, they forge a path toward a cleaner, more environmentally conscious world.

———

Kate L. Harrison is the co-founder and head of marketing at MoveEV, an AI-backed EV transition company that helps organizations convert fleet and employee-owned gas vehicles to electric, and reimburse for charging at home.

This Earth Week, let's consider the benefits of home charging for electric vehicles. Photo via Getty Images

Expert: 5 ways residential charging enhances the environmental benefits of EVs

guest column

Electric vehicles are already considered as an environmentally conscientious alternative to traditional internal combustion engine vehicles, thanks to their zero tailpipe emissions. However, the environmental benefits of EVs can be further enhanced by implementing a home-base charging routine.

This is important not only for individuals looking to cut their household’s carbon footprint, but also for corporations that operate EV fleets and are looking for additional cost and environmental savings as part of their larger sustainability initiatives. What makes home charging the most eco-conscious option?

1. Increased use of renewable energy

More than 4 million homes in the United States support rooftop solar panels that provide renewable energy back to the property or back to the local grid. When EV owners install solar panels or other renewable energy systems at their homes, they can charge their vehicles using this clean energy, effectively reducing the carbon footprint associated with their EV use to nearly zero. This direct use of renewables circumvents the inefficiencies and emissions associated with the broader energy grid which, depending on the location, may still rely on fossil fuels to a significant extent. This synergy between EVs and clean local energy production is exemplified by Tesla’s solar roof program, which promotes the adoption of clean home-based energy production as part of the holistic EV ownership experience offered through their app.

2. Optimizing charging times for lower emissions

Home charging allows for more flexible and strategic charging schedules. EV owners can often take advantage of off-peak electricity rates and lower carbon intensity periods by charging their vehicles overnight or when renewable energy production (such as wind or solar power) is at its peak. This not only leads to cost savings for the consumer, but also contributes to a balanced demand on the electric grid, reducing the need for high-carbon emergency power sources that are sometimes activated during peak demand times. Apps like WhenToPlugIn use a carbon intensity forecasting tool to help consumers pick the best times to charge.

3. Reducing dependency on public charging infrastructure

Public charging stations are crucial for long-distance EV travel. For everyday use, the current public charging landscape is trailing the demand curve. The good news is that the majority of EV drivers can rely almost solely on home charging. This practice ensures public charging spots remain open for those who, due to circumstances such as residing in multi-unit dwellings without charging facilities, cannot charge at home. Consequently, this accessibility supports wider adoption of EVs, leading to a more substantial reduction in overall emissions.

4. Avoiding unnecessary travel to public charging stations

The average driver has to detour 2 miles to refill their gas tank. For electric vehicles, finding an available public charger can add many more miles to a trip. Home charging ensures that EVs can start each day with a “full tank” — which, with new EVs, means hundreds of miles of range before needing to plug in again. This reduction in driven miles not only saves time but also decreases the energy consumption and emissions associated with traveling to and from charging stations unnecessarily. By charging at home, EV owners can ensure their vehicles are ready to go without extra trips, further cutting down on the vehicle's overall environmental impact.

5. Enhancing battery longevity

Charging at home typically involves slower charging speeds compared to rapid chargers found in public stations. These slower, more controlled charging rates are less taxing on an EV's battery, contributing to longer battery life and better overall efficiency. Longer battery lifespans mean fewer replacements over the vehicle's life, significantly reducing the environmental impact associated with battery production and disposal. This not only has clear environmental benefits but also economic ones for the vehicle owner.

Conclusion

The environmental benefits of electric vehicles are well-documented, but by incorporating home charging, these benefits are amplified significantly. Through the increased use of renewable energy, optimizing charging times to utilize green power, and reducing reliance on public charging infrastructure, EV owners can further reduce their environmental footprint. As technology advances and the energy grid becomes cleaner, the potential for home charging to contribute to a more sustainable future only grows, reinforcing the role of electric vehicles in the transition to greener transportation options.

———

Kate L. Harrison is the co-founder and head of marketing at MoveEV, an AI-backed EV transition company that helps organizations convert fleet and employee-owned gas vehicles to electric, and reimburse for charging at home.

While Houston isn't known as the coldest of climates, you still might want to review this myth-busting guest column. Photo via Pexels

Guest column: Cold weather and electric vehicles — separating fact from fiction

EVs in winter

Winter range loss is fueling this season’s heated debate around the viability of electric vehicles, but some important context is needed. Gasoline cars, just like their electric counterparts, lose a significant amount of range in cold weather too.

According to the Department of Energy, the average internal combustion engine’s fuel economy is 15 percent lower at 20° Fahrenheit than it would be at 77° Fahrenheit, and can drop as much as 24 percent for short drives.

As the world grapples with the implications of climate change and shifts toward sustainable technologies, it's important to put the pros and cons of EVs and traditional gas vehicles in perspective. And while Houston isn't known as the coldest of climates, you still might want to review this information.

The Semantics of Energy Consumption Hide the Real Issue: Cost

First, let's talk about the language. When discussing gas vehicles in cold climates, the conversation often centers around "fuel efficiency." It sounds less threatening, doesn't it? But in reality, this is just a euphemism for range loss, something for which EVs are frequently criticized.

Why does that matter? Because for most drivers who travel less than 40 miles a day, what range loss really means is higher fueling costs. When a gas vehicle loses range, it costs a lot more than the same range loss in an EV. For example, at $3.50 a gallon, a car that gets 30 MPG in warm weather and costs $46.67 to go 400 miles suddenly costs $8.24 more to drive the same distance. By contrast, an EV plugging in at $0.13 per kWh usually costs $13 to go 400 miles and bumps up to a piddly $16.25 even if it loses 20 percent efficiency when the temperature drops.

Some EV models lose 40 percent in extreme cold. OK, tack on another $3. That still leaves almost $30 in the driver’s pocket. Over the course of a year, those savings pile up.

Let’s Call It What It Is: Fear Mongering

Any seismic shift in technology comes with consumer hesitancy and media skepticism. Remember when everyone was afraid to stand in front of microwaves and thought the waves would make the food unsafe to eat? Or how, just a decade or so back everyone was talking about how cell phones could spontaneously explode?

Fear of new technology is a natural psychological response and to be expected. But it takes the media machine to turn consumer hesitation into a frenzy. Any way you slice it, 2023 was one big platform for expressing fears around EVs. Headline-grabbing tales of EV woes often lacked context or understanding of the technology. In a highly partisan landscape where EVs have been dubbed liberal leftist technology, what should be seen as a miraculous pro-American, pro-clean-air, pro-energy independence, pro-cost saving advancement is getting a beating in the press. In this environment, every bit of “bad EV news” spirals out into an echo-chamber of confirmation bias.

For example, Tesla’s recent software update was hyped as a 2 million vehicle “recall” even though the software was updated over the air without a single car needing to leave the driveway. Hertz's recent decision to reduce its Tesla fleet was seen by many as a referendum on the cars’ quality but was actually a decision based on Hertz’s miscalculations around repair costs and a mismatch in their projections of consumer demand for EV rentals.

While the cost of repairs might be higher, maintenance and fuel costs are still much lower than gas vehicles. EVs are better daily-use cars than rentals because while our country’s public charging infrastructure is still lagging, home charging is a huge benefit of EV ownership. Instead, the Hertz move and the negative coverage are further spooking the public.

The Truth About EVs

Despite the challenges, it's crucial to acknowledge the environmental advantages of EVs. For instance, EVs produce zero direct emissions, which significantly reduces air pollution and greenhouse gasses. According to the U.S. Environmental Protection Agency, EVs are far more energy efficient than gas-powered cars, converting more than 77 percent of electrical energy from the grid to power, compared to 12-30 percent for gasoline vehicles.

This efficiency translates to a cleaner, more sustainable mode of transportation. And stories of EVs stranded in Chicago aside, generally they perform well in cold weather, as clearly demonstrated in Norway. In Norway, the average temperature hovers a solid 10 degrees lower than in the U.S. Yet 93 percent of new cars sold there are electric. The first-ever drive from the north to the south pole was also completed by an electric vehicle. The success story of EVs in Norway and demonstration projects in harsh winter climates serve as a powerful counterargument to the notion that EVs are ineffective in cold weather.

So where does this leave us? The discourse around EVs and gasoline vehicles in cold weather needs a more balanced and factual approach. The range loss in gasoline vehicles is a significant issue that mirrors the challenges faced by EVs. By acknowledging this and understanding the broader context, we can have a more informed and equitable discussion about the future of automotive technology and its impact on our environment.

---

Kate L. Harrison is the co-founder and head of marketing at MoveEV, an AI-backed EV transition company that helps organizations convert fleet and employee-owned gas vehicles to electric, and reimburse for charging at home.

Here's a closer look at why Houston should be pushing for a more rapid transition to EVs. Photo via Getty Images

5 reasons Houston should prioritize electric vehicle adoption in 2024

guest column

As urban populations increase and more vehicles hit the roads across the United States, the quality of the air is compromised, directly impacting health, environment, and quality of life ― especially for children, minorities, and other vulnerable populations. A 2023 study by Site Selection Group placed Houston at the vanguard of this trend, projecting the metro area to grow nearly 10 percent by 2028, eclipsing 8 million residents.

According to Evolve Houston, a nonprofit working to accelerate EV adoption by bringing together local public and private organizations, residents, and government, the transportation sector emits 47 percent of all greenhouse gas emissions in the Houston area.

In this context, electric vehicles offer a practical solution to mitigate the challenges posed by tailpipe emissions. Their adoption in urban settings has the potential to significantly improve air quality and enhance public health. It’s no wonder the upcoming Houston Auto Show will feature a dedicated EV Pavilion.

Here's a closer look at why Houston should be pushing for a more rapid transition to EVs:

  1. Children’s development is at stake: Early childhood is a critical period for brain development. However, toxic air pollutants can significantly inhibit this growth during these formative years. The consequences include impairing children’s cognitive capabilities in reading and math, akin to missing an entire month of elementary school.
  2. EVs counteract historical racial inequalities: Beyond being an environmental challenge, air pollution is a glaring racial and social justice issue. Areas with fewer White residents suffer almost triple the nitrogen dioxide levels compared to predominantly White zones, as highlighted by the National Academy of Sciences. Historically marginalized communities, often near major traffic corridors, endure heightened pollution exposure. Transitioning to EVs can help address these deeply ingrained environmental inequities.
  3. The health benefits are monumental: A brighter future awaits if EVs become mainstream. According to the American Lung Association, if all new vehicles sold by 2035 are zero-emission, the U.S. could see up to 89,300 fewer premature deaths by 2050. Additionally, asthma attacks might decline by 2 million, saving 10.7 million workdays and resulting in an incredible $978 billion in public health savings.
  4. Global success stories prove the benefits: The impact of mass EV adoption has already been demonstrated outside the U.S. For instance, Norway has seen a notable reduction in dangerous particle emissions since 87 percent of its new car sales are now fully electric. Likewise, California’s adoption of electric vehicles correlated with a 3.2% decrease in asthma-related ER visits between 2013 and 2019.
  5. Cities have the power and means to lead the way: Many global cities are trailblazers in the electric transition. New York City, with more than 4,000 government-owned EVs, is a prime example. Moreover, by electrifying their take-home fleets, cities can set a precedent for their communities. Seeing neighbors drive electric vehicles daily serves as a powerful endorsement, motivating nearby residents to make the switch. Incentives like public charging stations, free parking for EVs, rebates for home charger installations, reimbursing for charging at home, and reduced tolls, further bolster this movement.

Houstonians stand at a pivotal juncture. The choices made today concerning transportation will profoundly influence the health and well-being of residents tomorrow. The shift to electric vehicles is more than just an eco-friendly choice; it's a commitment to a brighter, cleaner future. By leading with action and vision, cities can create a legacy that upcoming generations will appreciate and thrive in.

---

Kate L. Harrison is the co-founder and head of marketing at MoveEV, an AI-backed EV transition company that helps organizations convert fleet and employee-owned gas vehicles to electric, and reimburse for charging at home.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston microgrid company names new CEO

new hire

Houston-based electric microgrid company Enchanted Rock has named a new CEO.

John Carrington has assumed the role after serving as Enchanted Rock's executive chairman since June, the company announced earlier this month.

Carrington most recently was CEO of Houston-based Stem, which offers AI-enabled software and services designed for setting up and operating clean energy facilities. He stepped down as Stem’s CEO in September 2024. Stem, which was founded in 2006 and went public under Carrington's leadership in 2021, was previously based in San Francisco.

Carrington has also held senior leadership roles at Miasolé, First Solar and GE.

Corey Amthor has served as acting CEO of Enchanted Rock since June. He succeeded Enchanted Rock founder Thomas McAndrew in the role, with McAndrew staying on with the company as a strategic advisor and board member. With the hiring of Carrington, Amthor has returned to his role as president. According to the company, Amthor and Carrington will "partner to drive the company’s next phase of growth."

“I’m proud to join a leadership team known for technical excellence and execution, and with our company-wide commitment to innovation, we are well positioned to navigate this moment of unprecedented demand and advance our mission alongside our customers nationwide,” Carrington said in the news release. “Enchanted Rock’s technology platform delivers resilient, clean and scalable ultra-low-emissions onsite power that solves some of the most urgent challenges facing our country today. I’m energized by the strong momentum and growing market demand for our solutions, and we remain committed to providing data centers and other critical sectors with the reliable power essential to their operations.”

This summer, Enchanted Rock also announced that Ian Blakely would reassume the role of CFO at the company. He previously served as chief strategy officer. Paul Froutan, Enchanted Rock's former CTO, was also named COO last year.

6 major acquisitions that fueled the Houston energy sector in 2025

2025 In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy transition sector this year. Here are six major acquisitions that fueled the Houston energy industry in 2025:

Houston-based Calpine Corp. to be acquired in clean energy megadeal

Houston's Calpine Corp. will be acquired by Baltimore-based nuclear power company Constellation Energy Corp. Photo via DOE

In January 2025, Baltimore-based nuclear power company Constellation Energy Corp. and Houston-based Calpine Corp. entered into an agreement where Constellation would acquire Calpine in a cash and stock transaction with an overall net purchase price of $26.6 billion. The deal received final regulatory clearance this month.

Investment giant to acquire TXNM Energy for $11.5 billion

Blackstone Infrastructure, an affiliate of Blackstone Inc., will acquire a major Texas electricity provider. Photo via Shutterstock

In May 2025, Blackstone Infrastructure, an investment giant with $600 million in assets under management, agreed to buy publicly traded TXNM Energy in a debt-and-stock deal valued at $11.5 billion. The deal recently cleared a major regulatory hurdle, but still must be approved by the Public Utility Commission of Texas.

Houston's Rhythm Energy expands nationally with clean power acquisition

PJ Popovic, founder and CEO of Houston-based Rhythm Energy, which has acquired Inspire Clean Energy. Photo courtesy of Rhythm

Houston-based Rhythm Energy Inc. acquired Inspire Clean Energy in June 2025 for an undisclosed amount. The deal allowed Rhythm to immediately scale outside of Texas and into the Northeast, Midwest and mid-Atlantic regions.

Houston American Energy closes acquisition of New York low-carbon fuel co.

Houston American Energy Corp. has acquired Abundia Global Impact Group, which converts plastic and certified biomass waste into high-quality renewable fuels. Photo via Getty Images.

Renewable energy company Houston American Energy Corp. (NYSE: HUSA) acquired Abundia Global Impact Group in July 2025. The acquisition created a combined company focused on converting waste plastics into high-value, drop-in, low-carbon fuels and chemical products.

Chevron gets green light on $53 billion Hess acquisition

With the deal, Chevron gets access to one of the biggest oil finds of the decade. Photo via Chevron

In July 2025, Houston-based Chevron scored a critical ruling in Paris that provided the go-ahead for a $53 billion acquisition of Hess and access to one of the biggest oil finds of the decade. Chevron completed its acquisition of Hess shortly after the ruling from the International Chamber of Commerce in Paris.

Investors close partial acquisition of Phillips 66 subsidiary with growing EV network

Two investment firms have scooped up the majority stake in JET, a subsidiary of Phillips 66 with a rapidly growing EV charging network. Photo via Jet.de Facebook.

In December 2025, Energy Equation Partners, a London-based investment firm focused on clean energy companies, and New York-based Stonepeak completed the acquisition of a 65 percent interest in JET Tankstellen Deutschland GmbH, a subsidiary of Houston oil and gas giant Phillips 66.

Houston researchers develop energy-efficient film for AI chips

AI research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

---

This article originally appeared on our sister site, InnovationMap.