The newly launched plant will process brine produced from lithium-containing waste-magnesium salts. Photo via ibatterymetals.com

A Houston company has launched operations with what it's calling the world’s first commercial modular direct-lithium extraction plant.

International Battery Metals has reported that its new plant — just outside Salt Lake City, Utah, and co-located with US Magnesium LLC — is up and running. The plant, originally announced earlier this year, will process brine produced from lithium-containing waste-magnesium salts. The resulting lithium chloride product will provide feedstock for high-purity lithium carbonate generated by US Magnesium.

"This achievement is momentous for IBAT and a harbinger for an industry-transformation to significantly boost lithium production on a more cost-effective and sustainable basis, clearing a path for supplies of lower-priced, high-quality lithium for EV batteries and large-scale grid backup battery installations," John Burba, founder and CTO of IBAT, says in a news release. "This kicks off a U.S. lithium production renaissance and creates the potential for a sea change in global lithium supplies."

According to the company, IBAT is expected to expand production by installing additional columns on the same DLE modular platform with a goal of increasing capacity.

IBAT's patented technology is low cost, scalable, and sustainable. It reports that it's the only system that delivers a 97 percent extraction rate for lithium chloride from brine water, with up to 98 percent of water recycled and with minimal use of chemicals.

Under its agreement with US Magnesium, IBAT will receive royalties on lithium sales, as well as payments for equipment operations based on lithium prices and performance.

Earlier this summer, IBAT named Iris Jancik as the company's CEO. She will focus on expanding commercial deployment of IBAT's patented modular direct lithium extraction (DLE) plants, and begin in the role in mid-August.

The plant, expected to go online later this year, will process brine produced from lithium-containing waste-magnesium salts. Photo via ibatterymetals.com

Houston company plans to install the first commercial direct lithium extraction plant in the US

coming soon

Houston-based International Battery Metals, whose technology offers an eco-friendly way to extract lithium compounds from brine, is installing what it’s billing as the world’s first commercial modular direct-lithium extraction plant.

The mobile facility is located at US Magnesium’s operations outside Salt Lake City. The plant, expected to go online later this year, will process brine produced from lithium-containing waste-magnesium salts. The resulting lithium chloride product will provide feedstock for high-purity lithium carbonate generated by US Magnesium.

Under its agreement with US Magnesium, International Battery Metals (IBAT) will receive royalties on lithium sales, as well as payments for equipment operations based on lithium prices and performance.

IBAT says its patented technology is the only system that delivers a 97 percent extraction rate for lithium chloride from brine water, with up to 98 percent of water recycled and with minimal use of chemicals.

“Commercial operations will serve growing lithium demand from automakers for electric vehicle batteries, as well as energy storage batteries to support growing electricity demand and to balance the grid from increased renewable energy integration,” IBAT says in a news release.

Initially, the less than three-acre plant will annually produce 5,000 metric tons of lithium chloride. The modular plant was fabricated in Lake Charles, Louisiana.

“Our commercial operations with US Mag will advance a productive lithium extraction operation,” says Garry Flowers, CEO of IBAT. “Given current lithium demand, supply dependence on China, and permitting challenges, our expected commercial operations are coming at an ideal time to produce lithium at scale in the U.S.”

IBAT says the technology has been validated by independent reviewers and has been tested in Texas, California, Michigan, Ohio, and Oklahoma, as well as Argentina, Canada, Chile, and Germany.

IBAT says its modular concept positions the company to be a key supplier for rising U.S. lithium demand, providing an alternative to China and other global suppliers.

John Burba, founder, CTO and director of IBAT, says the modular extraction technology “will be the basis of future lithium extraction from brine resources around the world.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Spring-based private equity firm acquires West Texas wind farm

power deal

Spring-based private equity firm Arroyo Investors has teamed up with ONCEnergy, a Portland, Oregon-based developer of clean energy projects, to buy a 60-megawatt wind farm southeast of Amarillo.

Skyline Renewables, which acquired the site, known as the Whirlwind Energy Center, in 2018, was the seller. The purchase price wasn’t disclosed.

Whirlwind Energy Center, located in Floyd County, West Texas, comprises 26 utility-scale wind turbines. The wind farm, built in 2007, supplies power to Austin Energy.

“The acquisition reflects our focus on value-driven investments with strong counterparties, a solid operating track record, and clear relevance to markets with growing capacity needs,” Brandon Wax, a partner at Arroyo, said in a press release. “Partnering with ONCEnergy allows us to leverage deep operational expertise while expanding our investment footprint in the market.”

Arroyo focuses on energy infrastructure investments in the Americas. Its portfolio includes Spring-based Seaside LNG, which produces liquefied natural gas and LNG transportation services.

Last year, Arroyo closed an investment fund with more than $1 billion in total equity commitments.

Since its launch in 2003, Arroyo has “remained committed to investing in high-quality assets, creating value and positioning assets for exit within our expected hold period,” founding partner Chuck Jordan said in 2022.

$524M Texas Hill Country solar project powered by Hyundai kicks off

powering up

Corporate partners—including Hyundai Engineering & Construction, which maintains a Houston office—kicked off a $524 million solar power project in the Texas Hill Country on Jan. 27.

The 350-megawatt, utility-scale Lucy Solar Project is scheduled to go online in mid-2027 and represents one of the largest South Korean-led investments in U.S. renewable energy.

The solar farm, located on nearly 2,900 acres of ranchland in Concho County, will generate 926 gigawatt-hours of solar power each year. That’s enough solar power to supply electricity to roughly 65,000 homes in Texas.

Power to be produced by the hundreds of thousands of the project’s solar panels has already been sold through long-term deals to buyers such as Starbucks, Workday and Plano-based Toyota Motor North America.

The project is Hyundai Engineering & Construction’s largest solar power initiative outside Asia.

“The project is significant because it’s the first time Hyundai E&C has moved beyond its traditional focus on overseas government contracts to solidify its position in the global project financing market,” the company, which is supplying solar modules for the project, says on its website.

Aside from Hyundai Engineering & Construction, a subsidiary of automaker Hyundai, Korean and U.S. partners in the solar project include Korea Midland Power, the Korea Overseas Infrastructure & Urban Development Corp., solar panel manufacturer Topsun, investment firm EIP Asset Management, Primoris Renewable Energy and High Road Energy Marketing.

Primoris Renewable Energy is an Aurora, Colorado-based subsidiary of Dallas-based Primoris Services Corp. Another subsidiary, Primoris Energy Services, is based in Houston.

High Road is based in the Austin suburb of West Lake Hills.

“The Lucy Solar Project shows how international collaboration can deliver local economic development and clean power for Texas communities and businesses,” says a press release from the project’s partners.

Elon Musk vows to put data centers in space and run them on solar power

Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”