The newly launched plant will process brine produced from lithium-containing waste-magnesium salts. Photo via ibatterymetals.com

A Houston company has launched operations with what it's calling the world’s first commercial modular direct-lithium extraction plant.

International Battery Metals has reported that its new plant — just outside Salt Lake City, Utah, and co-located with US Magnesium LLC — is up and running. The plant, originally announced earlier this year, will process brine produced from lithium-containing waste-magnesium salts. The resulting lithium chloride product will provide feedstock for high-purity lithium carbonate generated by US Magnesium.

"This achievement is momentous for IBAT and a harbinger for an industry-transformation to significantly boost lithium production on a more cost-effective and sustainable basis, clearing a path for supplies of lower-priced, high-quality lithium for EV batteries and large-scale grid backup battery installations," John Burba, founder and CTO of IBAT, says in a news release. "This kicks off a U.S. lithium production renaissance and creates the potential for a sea change in global lithium supplies."

According to the company, IBAT is expected to expand production by installing additional columns on the same DLE modular platform with a goal of increasing capacity.

IBAT's patented technology is low cost, scalable, and sustainable. It reports that it's the only system that delivers a 97 percent extraction rate for lithium chloride from brine water, with up to 98 percent of water recycled and with minimal use of chemicals.

Under its agreement with US Magnesium, IBAT will receive royalties on lithium sales, as well as payments for equipment operations based on lithium prices and performance.

Earlier this summer, IBAT named Iris Jancik as the company's CEO. She will focus on expanding commercial deployment of IBAT's patented modular direct lithium extraction (DLE) plants, and begin in the role in mid-August.

The plant, expected to go online later this year, will process brine produced from lithium-containing waste-magnesium salts. Photo via ibatterymetals.com

Houston company plans to install the first commercial direct lithium extraction plant in the US

coming soon

Houston-based International Battery Metals, whose technology offers an eco-friendly way to extract lithium compounds from brine, is installing what it’s billing as the world’s first commercial modular direct-lithium extraction plant.

The mobile facility is located at US Magnesium’s operations outside Salt Lake City. The plant, expected to go online later this year, will process brine produced from lithium-containing waste-magnesium salts. The resulting lithium chloride product will provide feedstock for high-purity lithium carbonate generated by US Magnesium.

Under its agreement with US Magnesium, International Battery Metals (IBAT) will receive royalties on lithium sales, as well as payments for equipment operations based on lithium prices and performance.

IBAT says its patented technology is the only system that delivers a 97 percent extraction rate for lithium chloride from brine water, with up to 98 percent of water recycled and with minimal use of chemicals.

“Commercial operations will serve growing lithium demand from automakers for electric vehicle batteries, as well as energy storage batteries to support growing electricity demand and to balance the grid from increased renewable energy integration,” IBAT says in a news release.

Initially, the less than three-acre plant will annually produce 5,000 metric tons of lithium chloride. The modular plant was fabricated in Lake Charles, Louisiana.

“Our commercial operations with US Mag will advance a productive lithium extraction operation,” says Garry Flowers, CEO of IBAT. “Given current lithium demand, supply dependence on China, and permitting challenges, our expected commercial operations are coming at an ideal time to produce lithium at scale in the U.S.”

IBAT says the technology has been validated by independent reviewers and has been tested in Texas, California, Michigan, Ohio, and Oklahoma, as well as Argentina, Canada, Chile, and Germany.

IBAT says its modular concept positions the company to be a key supplier for rising U.S. lithium demand, providing an alternative to China and other global suppliers.

John Burba, founder, CTO and director of IBAT, says the modular extraction technology “will be the basis of future lithium extraction from brine resources around the world.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report maps Houston workforce development strategies as companies transition to cleaner energy

to-do list

The University of Houston’s Energy University latest study with UH’s Division of Energy and Innovation with stakeholders from the energy industry, academia have released findings from a collaborative white paper, titled "Workforce Development for the Future of Energy.”

UH Energy’s workforce analysis found that the greatest workforce gains occur with an “all-of-the-above” strategy to address the global shift towards low-carbon energy solutions. This would balance electrification and increased attention to renewables with liquid fuels, biomass, hydrogen, carbon capture, utilization and storage commonly known as CCUS, and carbon dioxide removal, according to a news release.

The authors of the paper believe this would support economic and employment growth, which would leverage workers from traditional energy sectors that may lose jobs during the transition.

The emerging hydrogen ecosystem is expected to create about 180,000 new jobs in the greater Houston area, which will offer an average annual income of approximately $75,000. Currently, 40 percent of Houston’s employment is tied to the energy sector.

“To sustain the Houston region’s growth, it’s important that we broaden workforce participation and opportunities,” Ramanan Krishnamoorti, vice president of energy and innovation at UH, says in a news release. “Ensuring workforce readiness for new energy jobs and making sure we include disadvantaged communities is crucial.”

Some of the key takeaways include strategies that include partnering for success, hands-on training programs, flexible education pathways, comprehensive support services, and early and ongoing outreach initiatives.

“The greater Houston area’s journey towards a low-carbon future is both a challenge and an opportunity,” Krishnamoorti continues. “The region’s ability to adapt and lead in this new era will depend on its commitment to collaboration, innovation, and inclusivity. By preparing its workforce, engaging its communities, and leveraging its industrial heritage, we can redefine our region and continue to thrive as a global energy leader.”

The study was backed by federal funding from the Department of the Treasury through the State of Texas under the Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012.

Houston geothermal startup selects Texas location for first energy storage facility

major milestone

Houston-based geothermal energy startup Sage Geosystems has teamed up with a utility provider for an energy storage facility in the San Antonio metro area.

The three-megawatt EarthStore facility will be on land controlled by the San Miguel Electric Cooperative, which produces electricity for customers in 47 South Texas counties. The facility will be located in the town of Christine, near the cooperative’s coal-fired power plant.

Sage says its energy storage system will be paired with solar energy to supply power for the grid operated by the Electric Reliability Council of Texas (ERCOT). The facility is set to open later this year.

“Once operational, our EarthStore facility in Christine will be the first geothermal energy storage system to store potential energy deep in the earth and supply electrons to a power grid,” Cindy Taff, CEO of Sage Geosystems, says in a news release.

The facility is being designed to store geothermal energy during six- to 10-hour periods.

“Long-duration energy storage is crucial for the ERCOT utility grid, especially with the increasing integration of intermittent wind and solar power generation,” says Craig Courter, CEO of the San Miguel Electric Cooperative.