A deal that's been a year in the making has officially closed. Photo via infraredcameras.com

A special purpose acquisition company has sealed the deal on its acquisition of a company with thermal imaging and sensing platform technology.

SportsMap Tech Acquisition Corp. (NASDAQ: SMAP) announced the close of its acquisition of Beaumont-based Infrared Cameras Holdings Inc. (ICI), which will be the name of the combined company. The new ticker symbol for the combined company’s common stock and public warrants will be ticker symbols “MSAI” and “MSAIW,” respectively.

“The close of the business combination represents a monumental milestone for our company, as we view the business to be well-suited for the public market," Infrared Cameras’ CEO Gary Strahan says in a news release. Strahan and his executive team will continue to lead the company.

Originally announced in the fall of 2021, the $100 million blank-check company is led by David Gow, CEO and chairman. Gow is also chairman of Gow Media, which owns digital media outlets InnovationMap, EnergyCapitalHTX, SportsMap, and CultureMap, as well as the SportsMap Radio Network, ESPN 97.5 and 92.5.

The SPAC revealed it would be acquiring ICI just over a year ago. According to the news release, SMAP’s stockholders approved the deal at a special meeting held on December 8.

"I’m happy to complete the business transaction, and equally excited to see Gary and his team deliver a unique product and solution to a diversified sub-set of market verticals," Gow says in the release. "We view this event to serve as the initial catalyst for the Company to deliver long-term shareholder returns.”

ICI's technology includes a patented single pane-of-glass view that can be used to monitor and analyze live imaging and sensing data across industries, including monitoring overheating equipment and methane gas leaks in the oil patch. ICI provides both the physical technology as well as a software-as-a-service component. Following the close of the deal, ICI reports that it will be focused on "new customer expansion, becoming a global online retailer, solidifying operational excellence, and continual improvements" to its technology.

“We have built a diversified integrated thermal imaging and sensing platform that is enhanced by our cloud-enabled technology, allowing for improved operations and critical asset protection," Strahan says. "We believe the support of investors as a public entity will aid our ultimate strategic objective of driving growth through increased enterprise customers, while, over time, positively transforming our margins as a result of our SaaS unit economics.”

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”