Houston-based Nauticus Robotics has a new CEO and fresh funding. Photo via LinkedIn

In the wake of a leadership reshuffling and amid lingering financial troubles, publicly traded Nauticus Robotics, a Webster-based developer of subsea robots and software, has netted more than $12 million in a second tranche of funding.

The more than $12 million in new funding includes a $9.5 million loan package.

Nauticus says the funding will accelerate certification of the company’s flagship Aquanaut robot, which is being prepared for its inaugural mission — inspecting a deep-water production facility in the Gulf of Mexico that’s owned by a major oil and gas company.

The new funding comes several weeks after the company announced a change in leadership, including a new interim CEO, interim chief financial officer, and lead general counsel.

Former Halliburton Energy Services executive John Gibson, the interim CEO, became president of Nauticus last October and subsequently joined the board. Gibson replaced Nauticus founder Nicolaus Radford in the CEO role. Radford’s LinkedIn profile indicates he left Nauticus in January 2024, the same month that Gibson stepped into the interim post.

Radford founded what was known as Houston Mechatronics in 2014.

Victoria Hay, the new interim CFO at Nauticus, and Nicholas Bigney, the new lead general counsel, came aboard in the fourth quarter of 2023.

“We currently have the intellectual property, prototypes, and the talent to deliver robust products and services,” Gibson says in a news release. “Team Nauticus is now laser-focused on converting our intellectual property, including both patents and trade secrets, into differentiated solutions that bring significant value to both commercial and government customers.”

A couple of weeks after the leadership shift, the NASDAQ stock market notified Nauticus that the average closing price of the company’s common stock had fallen below the $1-per-share threshold for 30 consecutive trading days. That threshold must be met to maintain a NASDAQ listing.

Nauticus was given 180 days to lift its average stock price above $1. If that threshold isn’t reached during that 180-day period, the company risks being delisted by NASDAQ. The stock closed February 6 at 32 cents per share.

The stock woes and leadership overhaul came on the heels of a dismal third-quarter 2023 financial report from Nauticus. The company’s fourth-quarter 2023 financial report hasn’t been filed yet.

For the first nine months of 2023, Nauticus reported an operating loss of nearly $20.9 million, up from almost $11.3 million during the same period a year earlier. Meanwhile, revenue sank from $8.2 million during the first nine months of 2022 to $5.5 million in the same period a year later.

Nauticus went public in September 2022 through a SPAC (special purpose acquisition company) merger with New York City-based CleanTech Acquisition Corp., a “blank check” company that went public in July 2021 through a $150 million IPO. The SPAC deal was valued at $560 million when it was announced in December 2021.

Nauticus recently hired investment bank Piper Sandler & Co. to help evaluate “strategic options to maximize shareholder value.”

One of the strategic alternatives involves closing Nauticus’ previously announced merger with Houston-based 3D at Depth, which specializes in subsea laser technology. When it was unveiled last October, the all-stock deal was valued at $34 million.

The acquisition is valued at $34 million. Photo via Nauticus Robotics

Houston subsea tech company makes acquisition, plans to grow renewables biz

all aboard

A Houston company that harnesses the power of robotics hardware and programing for underwater use has made an acquisition.

Nauticus Robotics Inc. (NASDAQ: KITT) announced it has acquired 3D at Depth Inc., a Colorado-based company with a subsea light detection and range, LiDAR, technology for inspection and data services. The deal closed for approximately $34 million in stock, before certain purchase price adjustments and the assumption of debt, per the news release.

“The future of subsea services lies in autonomy, data gathering, and analytics,” Nicolaus Radford, Nauticus’ founder and CEO, says in the release. “LiDAR has long since been core to terrestrial autonomy and by adding 3D’s capabilities to the Nauticus Fleet, we enhance autonomous vehicles in the offshore market. This acquisition increases the value of Nauticus’ fleet services and positions the Company to capitalize on data acquisition and analytics for subsea operations.”

The acquisition expands Nauticus' capabilities for its autonomous underwater suite of technology for its customers. With the deal, Nauticus will assume 20 patents secured or pending by acquiring 3D, which generated $9.8 million in revenue last year and is slated to grow revenue by more than 20 percent in 2023, according to the release.

“In addition to the compelling strategic and financial benefits of this deal, the acquisition will add momentum to our commercial growth trajectory,” Radford continues. “By adding 3D’s technology, offshore inspection and data service, and experienced team, Nauticus expands our addressable market and accelerates our customer penetration in the offshore energy and renewables industries.”

Founded in 2009, 3D will operate as a division of Nauticus when the deal closes sometime before the end of the year. Nauticus will also assume approximately $4.1 million of debt in the transaction.

“The Nauticus Robotics and 3D at Depth combination creates a compelling solution for the subsea market and should help improve our products and services for all our clients,” Carl Embry, founder and CEO of 3D at Depth, says in the release. “We believe the integration of our unique subsea multi-dimensional data collection and processing with an emerging leader in subsea robotics creates a differentiated offering for customers seeking safer, cleaner, lower-cost subsea services.”

Nauticus, founded by Radford in 2014 as Houston Mechatronics, went public via a blank check company last year.

———

This article originally ran on InnovationMap

Virginia-based Leidos has extended its work with Houston-based Nauticus Robotics. Photo via LinkedIn

Engineering tech co. expands collaboration with Houston robotics startup in $2.1M contract extension

underwater moves

A major customer of Webster-based Nauticus Robotics, a maker of autonomous oceangoing robots, has bulked up its current contract.

Reston, Virginia-based Leidos has tacked on a $2.1 million extension to its existing contract with Nauticus. That brings Leidos’ total financial commitment from $14.5 million to $16.6 million.

In partnership with Leidos, Nauticus is developing next-generation underwater drones for business and military customers. These unmanned underwater vehicles are being designed to carry out tasks that are dangerous or impossible for human divers to do, such as mapping the ocean floor, studying sea creatures, and monitoring water pollution.

“This very important work combines great attributes from each company to deploy a truly novel subsea capability,” says Nicolaus Radford, founder and CEO of Nauticus.

Based on Nauticus’ Aquanaut product, these robots will feature the company’s toolKITT software, which supplies artificial intelligence capabilities to undersea vehicles.

“This work is the centerpiece of Nauticus’ excellent collaboration with Leidos,” says Radford, “and I look forward to continuing our mutual progress of advancing the state of the art in undersea vehicles.”

Founded in 2014 as Houston Mechatronics, Nauticus adopted its current branding in 2021. Last year, Nauticus became a publicly traded company through a merger with a “blank check” company called CleanTech Acquisition Corp.

During the first six months of 2023, Nauticus generated revenue of nearly $4 million, down from a little over $5.2 million in the same period last year. Its operating loss for the first half of 2023 was almost $12.7 million, up from slightly more than $5.2 million during the same time in 2022.

Nauticus attributes some of the revenue drop to delays in authorization of contracts with government agencies.

The company recently lined up a $15 million debt facility to bolster its operations.

“I’ve never been more optimistic about the future of Nauticus. We employ some of the best minds in the industry, and we are positioned with the right product at the right time to disrupt a $30 billion market,” Radford said earlier this month. “Demand from potential customers is high, but constructing our fleet is capital-intensive.”

More good news for Nauticus: It recently signed contracts with energy giants Shell and Petrobras. Financial terms weren’t disclosed.

The Shell contract involves a project in the Gulf of Mexico’s Princess oil and gas field that Nauticus says could lead to millions of dollars in additional contracts over the next few years. Shell operates the offshore field, which is around 40 miles southeast of New Orleans, and owns a nearly 50 percent stake in it.

Co-owners of the Princess project are Houston-based ConocoPhillips, Spring-based ExxonMobil, and London-based BP, whose North American headquarters is in Houston. In July, the Reuters news service reported that ConocoPhillips was eyeing a sale of its stake in the Princess field.

Under the contract with Petrobras, whose U.S. arm is based in Houston, Nauticus will dispatch its Aquanaut robot to support the Brazilian energy company’s offshore activities in South America. Nauticus says this deal “opens up a potential market opportunity” in Brazil exceeding $100 million a year.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Why 2026 must be the year Texas makes transmission as its top energy priority

guest column

Texas takes pride in running one of the most dynamic and deregulated energy markets in the world, but conversations about electricity rarely focus on what keeps it moving: transmission infrastructure.

As ERCOT projects unprecedented electricity demand growth and grid operators update their forecasts for 2026, it’s becoming increasingly clear that generation, whether renewable or fossil, is only part of the solution. Transmission buildout and sound governing policy now stand as the linchpin for reliability, cost containment, and long-term resilience in a grid under unprecedented stress.

At the heart of this urgency is one simple thing: demand. Over 2024 and 2025, ERCOT has been breaking records at a pace we haven’t seen before. From January through September of 2025 alone, electricity use jumped more than 5% over the year before, the fastest growth of any major U.S. grid. And it’s not slowing down.

The Energy Information Administration expects demand to climb another 14% in 2026, pushing total consumption to roughly 425 terawatt-hours in just the first nine months. That surge isn’t just about more people moving to Texas or running their homes differently; it’s being driven by massive industrial and technology loads that simply weren’t part of the equation ten years ago.

The most dramatic contributor to that rising demand is large-scale infrastructure such as data centers, cloud computing campuses, crypto mining facilities, and electrified industrial sectors. In the latest ERCOT planning update, more than 233 gigawatts of total “large load” interconnection requests were being tracked, an almost 300% jump over just a year earlier, with more than 70% of those requests tied to data centers.

Imagine hundreds of new power plants requesting to connect to the grid, all demanding uninterrupted power 24/7. That’s the scale of the transition Texas is facing, and it’s one of the major reasons transmission planning is no longer back-of-house policy talk but a central grid imperative.

Yet transmission is complicated, costly, and inherently long-lead. It takes three to six years to build new transmission infrastructure, compared with six to twelve months to add a new load or generation project.

This is where Texas will feel the most tension. Current infrastructure can add customers and power plants quickly, but the lines to connect them reliably take time, money, permitting, and political will.

To address these impending needs, ERCOT wrapped up its 2024 Regional Transmission Plan (RTP) at the end of last year, and the message was pretty clear: we’ve got work to do. The plan calls for 274 transmission projects and about 6,000 miles of new, rebuilt, or upgraded lines just to handle the growth coming our way and keep the lights on.

The plan also suggests upgrading to 765-kilovolt transmission lines, a big step beyond the standard 345-kV system. When you start talking about 765-kilovolt transmission lines, that’s a big leap from what Texas normally uses. Those lines are built to move a massive amount of power over long distances, but they’re expensive and complicated, so they’re only considered when planners expect demand to grow far beyond normal levels. Recommending them is a clear signal that incremental upgrades won’t be enough to keep up with where electricity demand is headed.

There’s a reason transmission is suddenly getting so much attention. ERCOT and just about every industry analyst watching Texas are projecting that electricity demand could climb as high as 218 gigawatts by 2031 if even a portion of the massive queue of large-load projects actually comes online. When you focus only on what’s likely to get built, the takeaway is the same: demand is going to stay well above anything we’ve seen before, driven largely by the steady expansion of data centers, cloud computing, and digital infrastructure across the state.

Ultimately, the decisions Texas makes on transmission investment and the policies that determine how those costs are allocated will shape whether 2026 and the years ahead bring greater stability or continued volatility to the grid. Thoughtful planning can support growth while protecting reliability and affordability, but falling short risks making volatility a lasting feature of Texas’s energy landscape.

Transmission Policy: The Other Half of the Equation

Infrastructure investment delivers results only when paired with policies that allow it to operate efficiently and at scale. Recognizing that markets alone won’t solve these challenges, Texas lawmakers and regulators have started creating guardrails.

For example, Senate Bill 6, now part of state law, aims to improve how large energy consumers are managed on the grid, including new rules for data center operations during emergencies and requirements around interconnection. Data centers may even be required to disconnect under extreme conditions to protect overall system reliability, a novel and necessary rule given their scale.

Similarly, House Bill 5066 changed how load forecasting occurs by requiring ERCOT to include utility-reported projections in its planning processes, ensuring transmission planning incorporates real-world expectations. These policy updates matter because grid planning isn’t just a technical checklist. It’s about making sure investment incentives, permitting decisions, and cost-sharing rules are aligned so Texas can grow its economy without putting unnecessary pressure on consumers.

Without thoughtful policy, we risk repeating past grid management mistakes. For example, if transmission projects are delayed or underfunded while new high-demand loads come online, we could see congestion worsen. If that happens, affordable electricity would be located farther from where it’s needed, limiting access to low-cost power for consumers and slowing overall economic growth. That’s especially critical in regions like Houston, where energy costs are already a hot topic for households and businesses alike.

A 2026 View: Strategy Over Shortage

As we look toward 2026, here are the transmission and policy trends that matter most:

  • Pipeline of Projects Must Stay on Track: ERCOT’s RTP is ambitious, and keeping those 274 projects, thousands of circuit miles, and next-generation 765-kV lines moving is crucial for reliability and cost containment.
  • Large Load Forecasting Must Be Nuanced: The explosion in large-load interconnection requests, whether or not every project materializes, signals demand pressure that transmission planners cannot ignore. Building lines ahead of realized demand is not wasteful planning; it’s insurance against cost and reliability breakdowns.
  • Policy Frameworks Must Evolve: Laws like SB 6 and HB 5066 are just the beginning. Texas needs transparent rules for cost allocation, interconnection standards, and emergency protocols that keep consumers protected while supporting innovation and economic growth.
  • Coordination Among Stakeholders Is Critical: Transmission doesn’t stop at one utility’s borders. Regional cooperation among utilities, ERCOT, and local stakeholders is essential to manage congestion and develop systemwide reliability solutions.

Here’s the bottom line: Generation gets the headlines, but transmission makes the grid work. Without a robust transmission buildout and thoughtful governance, even the most advanced generation mix that includes wind, solar, gas, and storage will struggle to deliver the reliability Texans expect at a price they can afford.

In 2026, Texas is not merely testing its grid’s capacity to produce power; it’s testing its ability to move that power where it’s needed most. How we rise to meet that challenge will define the next decade of energy in the Lone Star State.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

New Gulf Coast recycling plant partners with first-of-kind circularity hub

now open

TALKE USA Inc., the Houston-area arm of German logistics company TALKE, officially opened its Recycling Support Center earlier this month.

Located next to the company's Houston-area headquarters, the plant will process post-consumer plastic materials, which will eventually be converted into recycling feedstock. Chambers County partially funded the plant.

“Our new recycling support center expands our overall commitment to sustainable growth, and now, the community’s plastics will be received here before they head out for recycling. This is a win for the residents of Chambers County," Richard Heath, CEO and president of TALKE USA, said in a news release.

“The opening of our recycling support facility offers a real alternative to past obstacles regarding the large amount of plastic products our local community disposes of. For our entire team, our customers, and the Mont Belvieu community, today marks a new beginning for effective, safe, and sustainable plastics recycling.”

The new plant will receive the post-consumer plastic and form it into bales. The materials will then be processed at Cyclyx's new Houston Circularity Center, a first-of-its-kind plastic waste sorting and processing facility being developed through a joint venture between Cyclix, ExxonMobil and LyondellBasell.

“Materials collected at this facility aren’t just easy-to-recycle items like water bottles and milk jugs. All plastics are accepted, including multi-layered films—like chip bags and juice pouches. This means more of the everyday plastics used in the Chambers County community can be captured and kept out of landfills,” Leslie Hushka, chief impact officer at Cyclyx, added in a LinkedIn post.

Cyclyx's circularity center is currently under construction and is expected to produce 300 million pounds of custom-formulated feedstock annually.

Houston quantum simulator research reveals clues for solar energy conversion

energy flow

Rice University scientists have used a programmable quantum simulator to mimic how energy moves through a vibrating molecule.

The research, which was published in Nature Communications last month, lets the researchers watch and control the flow of energy in real time and sheds light on processes like photosynthesis and solar energy conversion, according to a news release from the university.

The team, led by Rice assistant professor of physics and astronomy Guido Pagano, modeled a two-site molecule with one part supplying energy (the donor) and the other receiving it (the acceptor).

Unlike in previous experiments, the Rice researchers were able to smoothly tune the system to model multiple types of vibrations and manipulate the energy states in a controlled setting. This allowed the team to explore different types of energy transfer within the same platform.

“By adjusting the interactions between the donor and acceptor, coupling to two types of vibrations and the character of those vibrations, we could see how each factor influenced the flow of energy,” Pagano said in the release.

The research showed that more vibrations sped up energy transfer and opened new paths for energy to move, sometimes making transfer more efficient even with energy loss. Additionally, when vibrations differed, efficient transfer happened over a wider range of donor–acceptor energy differences.

“The results show that vibrations and their environment are not simply background noise but can actively steer energy flow in unexpected ways,” Pagano added.

The team believes the findings could help with the design of organic solar cells, molecular wires and other devices that depend on efficient energy or charge transfer. They could also have an environmental impact by improving energy harvesting to reduce energy losses in electronics.

“These are the kinds of phenomena that physical chemists have theorized exist but could not easily isolate experimentally, especially in a programmable manner, until now,” Visal So, a Rice doctoral student and first author of the study, added in the release.

The study was supported by The Welch Foundation,the Office of Naval Research, the National Science Foundation CAREER Award, the Army Research Office and the Department of Energy.