A team of Texas researchers has landed a nearly $1 million NSF grant to address rural flood management challenges with community input. Photo via Getty Images.

A team from Rice University, the University of Texas at Austin and Texas A&M University have been awarded a National Science Foundation grant under the CHIRRP—or Confronting Hazards, Impacts and Risks for a Resilient Planet—program to combat flooding hazards in rural Texas.

The grant totals just under $1 million, according to a CHIRRP abstract.

The team is led by Avantika Gori, assistant professor of civil and environmental engineering at Rice. Other members include Rice’s James Doss-Gollin, Andrew Juan at Texas A&M University and Keri Stephens at UT Austin.

Researchers from Rice’s Severe Storm Prediction, Education and Evacuation from Disasters Center and Ken Kennedy Institute, Texas A&M’s Institute for A Disaster Resilient Texas and the Technology & Information Policy Institute at UT Austin are part of the team as well.

Their proposal includes work that introduces a “stakeholder-centered framework” to help address rural flood management challenges with community input.

“Our goal is to create a flood management approach that truly serves rural communities — one that’s driven by science but centers around the people who are impacted the most,” Gori said in a news release.

The project plans to introduce a performance-based system dynamics framework that integrates hydroclimate variability, hydrology, machine learning, community knowledge, and feedback to give researchers a better understanding of flood risks in rural areas.

The research will be implemented in two rural Texas areas that struggle with constant challenges associated with flooding. The case studies aim to demonstrate how linking global and regional hydroclimate variability with local hazard dynamics can work toward solutions.

“By integrating understanding of the weather dynamics that cause extreme floods, physics-based models of flooding and AI or machine learning tools together with an understanding of each community’s needs and vulnerabilities, we can better predict how different interventions will reduce a community’s risk,” Doss-Gollin said in a news release.

At the same time, the project aims to help communities gain a better understanding of climate science in their terms. The framework will also consider “resilience indicators,” such as business continuity, transportation access and other features that the team says more adequately address the needs of rural communities.

“This work is about more than flood science — it’s also about identifying ways to help communities understand flooding using words that reflect their values and priorities,” said Stephens. “We’re creating tools that empower communities to not only recover from disasters but to thrive long term.”

OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models to support storm response decision makers, has secured an NSF grant. Photo via Getty Images

Houston-area researchers score $1.5M grant to develop storm response tech platform

fresh funding

Researchers from Rice University have secured a $1.5 million grant from the National Science Foundation to continue their work on improving safety and resiliency of coastal communities plagued by flooding and hazardous weather.

The Rice team of engineers and collaborators includes Jamie Padgett, Ben Hu, and Avantika Gori along with David Retchless at Texas A&M University at Galveston. The researchers are working in collaboration with the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center and the Ken Kennedy Institute at Rice and A&M-Galveston’s Institute for a Disaster Resilient Texas.

Together, the team is developing and hopes to deploy “Open-Source Situational Awareness Framework for Equitable Multi-Hazard Impact Sensing using Responsible AI,” or OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models "to provide timely, reliable and equitable insights to emergency response organizations and communities before, during and after tropical cyclones and coastal storm events," reads a news release from Rice.

“Our goal with this project is to enable communities to better prepare for and navigate severe weather by providing better estimates of what is actually happening or might happen within the next hours or days,” Padgett, Rice’s Stanley C. Moore Professor in Engineering and chair of the Department of Civil and Environmental Engineering, says in the release. “OpenSafe.AI will take into account multiple hazards such as high-speed winds, storm surge and compound flooding and forecast their potential impact on the built environment such as transportation infrastructure performance or hazardous material spills triggered by severe storms.”

OpenSafe.AI platform will be developed to support decision makers before, during, and after a storm.

“By combining cutting-edge AI with a deep understanding of the needs of emergency responders, we aim to provide accurate, real-time information that will enable better decision-making in the face of disasters,” adds Hu, associate professor of computer science at Rice.

In the long term, OpenSafe.AI hopes to explore how the system can be applied to and scaled in other regions in need of equitable resilience to climate-driven hazards.

“Our goal is not only to develop a powerful tool for emergency response agencies along the coast but to ensure that all communities ⎯ especially the ones most vulnerable to storm-induced damage ⎯ can rely on this technology to better respond to and recover from the devastating effects of coastal storms,” adds Gori, assistant professor of civil and environmental engineering at Rice.

A Rice University study will consider how "design strategies aimed at improving civic engagement in stormwater infrastructure could help reduce catastrophic flooding." Photo via Getty Images

Houston university to lead new NSF-back flooding study

risk mitigation

Houston will be the setting of a new three-year National Science Foundation-funded study that focuses on a phenomenon the city is quite familiar with: flooding.

Conducted by Rice University, the study will consider how "design strategies aimed at improving civic engagement in stormwater infrastructure could help reduce catastrophic flooding," according to a statement.

The team will begin its research in the Trinity/Houston Gardens neighborhood and will implement field research, participatory design work and hydrological impact analyses.

Rice professor of anthropology Dominic Boyer and Rice's Gus Sessions Wortham Professor of Architecture Albert Pope are co-principal investigators on the study. They'll be joined by Phil Bedient, director of the Severe Storm Prediction, Education and Evacuation from Disasters Center at Rice, and Jessica Eisma, a civil engineer at the University of Texas at Arlington.

According to Boyer, the study will bring tougher researchers from across disciplines as well as community members and even elementary-aged students.

"Our particular focus will be on green stormwater infrastructure—techniques like bioswale, green roofs and rain gardens—that are more affordable than conventional concrete infrastructure and ones where community members can be more directly involved in the design and implementation phases,” Boyer said. “We envision helping students and other community members design and complete projects like community rain gardens that offer a variety of beneficial amenities and can also mitigate flooding.”

Rice's Severe Storm Prediction, Education and Evacuation from Disasters Center, or SSPEED Center, is a leader in flood mitigation research and innovation.

In 2021, the center developed its FIRST radar-based flood assessment, mapping, and early-warning system based on more than 350 maps that simulate different combinations of rainfall over various areas of the watershed. The system was derived from the Rice/Texas Medical Center Flood Alert System (FAS), which Bedient created 20 years ago. Click here to read more.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

8 Houston energy companies land on Time's top greentech list for 2025

top honor

The accolades keep rolling in for Houston-based Fervo Energy, a producer of geothermal power.

Fervo lands at No. 6 on Time magazine and Statista’s new list of America’s Top GreenTech Companies of 2025. The ranking recognizes sustainability-focused companies based on factors such as impact, financial strength, and innovation.

Time notes that Fervo broke ground in 2023 in Utah on what the company claims will be the world’s largest geothermal plant. The plant is scheduled to start supplying carbon-free electricity to the grid next year and to reach its 400-megawatt capacity in three years.

“Technologies like this only make a difference if we deploy them at large-scale in a way that can reduce carbon emissions and increase the reliability of the grid,” Fervo CEO Tim Latimer told Time in 2023.

The startup was named North American Company of the Year by research and consulting firm Cleantech Group for 2025. Fervo topped the Global Cleantech 100, Cleantech Group’s annual list of the world’s most innovative and promising cleantech companies.

Last year, Fervo also made Time’s list of the 200 Best Inventions of 2024. Fervo was recognized in the green energy category for its FervoFlex geothermal power system.

Founded in 2017, Fervo is now a unicorn, meaning its valuation as a private company exceeds $1 billion. The startup’s valuation is estimated at $1.4 billion. According to PitchBook data, the company raised $634 million in the fourth quarter of 2024.

In all, eight Houston-area companies appear among the top 250 greentech companies ranked by Time and Statista. Other than Fervo, they are:

  • No. 43 Lancium Technologies, an energy storage and distribution company
  • No. 50 Solugen, a producer of sustainable chemicals.
  • No. 56 Quaise Energy, which specializes in terawatt-scale geothermal power.
  • No. 129 Plus Power, a developer, owner and operator of battery storage projects.
  • No. 218 Dream Harvest, which promotes sustainable vertical farming.
  • No. 225 Cemvita, which uses synthetic biology to convert carbon emissions into bio-based chemicals.
  • No. 226 Syzygy Plasmonics, which decarbonizes chemical production.
Vermont-based BETA Technologies claimed the No. 1 spot. The company manufactures electric aircraft.

Global co. opens state-of-the-art energy innovation hub in Houston

flagship facility

French multinational company Schneider Electric has opened a new 10,500-square-foot, state-of-the-art Energy Innovation Center in Houston.

The new facility is located in Houston’s Energy Corridor and is designed to “foster increased collaboration and technological advancements across the entire value chain,” according to a news release from the company. The new Houston location joins Schneider's existing innovation hubs in Paris, Singapore and Bangalore.

The venue will serve as a training center for process control engineers, production superintendents, manufacturing managers, technical leads and plant operations personnel. It can simulate various real-world scenarios in refineries, combined-cycle power plants, ethylene plants, recovery boilers and chemical reactors.

It includes an interactive control room and artificial Intelligence applications that “highlight the future of industrial automation,” according to the release.

"Digitalization is significantly enhancing the global competitiveness of the U.S. through continuous innovation and increased investment into next-generation technology," Aamir Paul, Schneider Electric's President of North America Operations, said in the release.

Texas has over 4,100 Schneider Electric employees, the most among U.S. states, and has facilities in El Paso, the Dallas-Fort Worth metroplex and other areas.

"This flagship facility in the Energy Capital of the World underscores our commitment to driving the future of software-defined automation for our customers in Houston and beyond,” Paul added in the release. “With this announcement, we are excited to continue supporting the nation's ambitions around competitive, efficient and cost-effective manufacturing."

Schneider Electric says the new Houston facility is part of its expansion plans in the U.S. The company plans to invest over $700 million in its U.S. operations through 2027, which also includes an expansion at its El Paso campus.

The company also announced plans to invest in solar and battery storage systems developed, built, and operated by Houston-based ENGIE North America last year. Read more here.