Founded in 2023, MadXR is a Houston-based Extended Reality startup. The innovative company specializes in safety training experiences for the energy sector and beyond. From pre-built virtual reality training modules to custom developed, end-to-end XR solutions, MadXR creates interactive, lifelike virtual reality and augmented reality experiences that allow trainees to practice safety procedures in a controlled environment.

Houston Energy Transition Initiative recently connected with Miranda Palmisano, CEO of MadXR, to discuss the applications and benefits of XR—and how it can help energy companies reduce HSE risk and carbon intensity like never before.

HETI: You were at Chevron for nearly 10 years before MadXR. How did your experiences at Chevron shape your approach to starting and running your own company?

Miranda Palmisano: Prior to founding MadXR, I held many different roles at Chevron across upstream and downstream. As the Connected Worker Product Manager, I drove digital acceleration for our global field and maintenance teams in refineries, terminals, and manufacturing sites, elevating efficiency and safety. During that time, I began exploring the value case of VR across Chevron.

I formed the Extended Reality Team and shortly became the Extended Reality Product Manager. Our team began using VR to conduct safety training within a virtual environment. It allowed us to train Chevron’s workforce safer and more efficiently by providing hands-on experience without the risk of real-world errors.

HETI: What inspired you to start your own company?

MP: Extended reality is an exciting new technology, and I quickly discovered the growing need for flexible, cost-effective XR content development in relation to life-saving-action training, such as confined-space entry, lockout/tagout procedures, and working from heights. I believe that affordable and high-quality XR experiences should be accessible to all companies, regardless of budget. That’s why MadXR has transparent pricing options that range from pre-built VR training modules to turnkey teams—and we empower our customers to take full ownership of their content and assets.

HETI: How has being based in Houston helped MadXR?

MP: The network in Houston is unmatched. In the energy capital of the world, it’s much easier to access the companies we’re targeting and hire the talent we need to grow. Innovation hubs like Houston’s Ion District have given us the resources and opportunities to connect with a vast number of forward-thinking businesses.

HETI: Do you believe XR will be instrumental in helping companies reach low carbon or net zero goals?

MP: XR is poised to revolutionize the energy industry, offering unprecedented opportunities for efficiency, engagement, and environmental sustainability. Imagine donning a headset and virtually navigating a facility halfway across the globe in real-time, or preparing your entire team with comprehensive virtual training before they physically enter a site. These scenarios highlight XR’s potential to enhance operational efficiency and employee engagement significantly. Beyond the immediate benefits, XR also plays a crucial role in reducing carbon emissions by eliminating the need for unnecessary travel. This technology isn’t just about improving current processes; it’s about reimagining the future of energy industry operations in a more sustainable, efficient, and engaging way.

HETI: MadXR will be celebrating its first anniversary in April. Can you tell us more about your vision for the future and what you’re focused on in 2024?

MP: In 2023, we were focused on ramping up and generating awareness. This year, we’re dedicated to expanding our reach and impact. We plan to incorporate AI into our learning modules and XR development to make them even more informational and interactive.

While our primary focus is on energy, we’re exploring how we can extend XR training to other industries, including automotive, healthcare, and pharmaceuticals.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

To learn more about MadXR’s mission and XR training modules, visit MadXR.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Meta to buy all power from new ENGIE Texas solar farm

power purchase

Meta, the parent company of social media platform Facebook, has agreed to buy all of the power from a $900 million solar farm being developed near Abilene by Houston-based energy company ENGIE North America.

The 600-megawatt Swenson Ranch solar farm, located in Stonewall County, will be the largest one ever built in the U.S. by ENGIE. The solar farm is expected to go online in 2027.

Meta will use electricity generated by the solar farm to power its U.S. data centers. All told, Meta has agreed to purchase more than 1.3 gigawatts of renewable energy from four ENGIE projects in Texas.

“This project marks an important step forward in the partnership between our two companies and their shared desire to promote a sustainable and competitive energy model,” Paulo Almirante, ENGIE’s senior executive vice president of renewable and flexible power, said in a news release.

In September, ENGIE North America said it would collaborate with Prometheus Hyperscale, a developer of sustainable liquid-cooled data centers, to build data centers at ENGIE-owned renewable energy and battery storage facilities along the I-35 corridor in Texas. The corridor includes Austin, Dallas-Fort Worth, San Antonio and Waco.

The first projects under the ENGIE-Prometheus umbrella are expected to go online in 2026.

ENGIE and Prometheus said their partnership “brings together ENGIE's deep expertise in renewables, batteries, and energy management and Prometheus' highly efficient liquid-cooled data center design to meet the growing demand for reliable, sustainable compute capacity — particularly for AI and other high-performance workloads.”

Fervo named to prestigious list of climate tech companies to watch

top honor

Houston-based Fervo Energy has received yet another accolade—MIT Technology Review named the geothermal energy startup to its 2025 list of the 10 global climatetech companies to watch.

Fervo, making its second appearance on the third annual list, harnesses heat from deep below the ground to generate clean geothermal energy, MIT Technology Review noted. Fervo is one of four U.S. companies to land on the list.

Fervo “uses fracking techniques to create geothermal reservoirs capable of delivering enough electricity to power massive data centers and hundreds of thousands of homes,” MIT Technology Review said.

MIT Technology Review said it produces the annual list to draw attention to promising climatetech companies that are working to decarbonize major sectors of the economy.

“Though the political and funding landscape has shifted dramatically in the US since the last time we put out this list,” MIT Technology Review added, “nothing has altered the urgency of the climate dangers the world now faces — we need to rapidly curb greenhouse gas emissions to avoid the most catastrophic impacts of climate change.”

In addition to MIT Technology Review’s companies-to-watch list, Fervo has appeared on similar lists published by Inc.com, Time magazine and Climate Insider.

In an essay accompanying MIT Technology Review’s list, Microsoft billionaire Bill Gates said his Breakthrough Energy Ventures investment group has invested in more than 150 companies, including Fervo and another company on the MIT Technology Review list, Redwood Materials.

In his essay, Gates wrote that ingenuity is the best weapon against climate change.

Yet climate technology innovations “offer more than just a public good,” he said. “They will remake virtually every aspect of the world’s economy in the coming years, transforming energy markets, manufacturing, transportation, and many types of industry and food production. Some of these efforts will require long-term commitments, but it’s important that we act now. And what’s more, it’s already clear where the opportunities lie.”

In a recent blog post highlighting Fervo, Gates predicted geothermal will eventually supply up to 20 percent of the world’s electricity, up from his previous estimate of as much as 5 percent.

Fervo is one of the pioneers in geothermal energy. Gates and other investors have pumped $982 million into Fervo since its founding in 2017. With an estimated valuation of $1.4 billion, Fervo has achieved unicorn status, meaning its valuation as a private company exceeds $1 billion.

Aside from Breakthrough Energy Ventures, oilfield services provider Liberty Energy is a Fervo investor. U.S. Energy Secretary Chris Wright was chairman and CEO of Denver-based Liberty Energy before assuming his federal post.

Axios reported on Oct. 1 that Fervo is raising a $300 million series E round, which would drive up the startup’s valuation. News of the $300 million round comes as the company gears up for a possible IPO, according to Axios.

Fervo co-founder and CEO Tim Latimer told Axios this spring that a potential IPO is likely in 2026 or 2027. Ahead of an IPO, the startup is aiming for a $2 billion to $4 billion valuation, Axios reported.

The first phase of Fervo’s marquee Cape Station geothermal energy plant in Utah is scheduled to go online next year, with the second phase set to open in 2028. Once it’s completed, the plant will be capable of generating 500 megawatts of power. This summer, the startup said it secured $205.6 million in capital to finance construction of the plant.

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

clean water research

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water.

PFAS have been linked to immune system disruption, certain cancers, liver damage and reproductive disorders. They can be found in water, soil and air, as well as in products like Teflon pans, waterproof clothing and food packaging. They do not degrade easily and are difficult to remove.

Thus far, PFAS cleanup methods have relied on adsorption, in which molecules cling to materials like activated carbon or ion-exchange resins. But these methods tend to have limited capacity, low efficiency, slow performance and can create additional waste.

The Rice-led study, published in the journal Advanced Materials, centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

The study was led by Rice professor Youngkun Chung, a postdoctoral fellow under the mentorship of Michael S. Wong. It was conducted in collaboration with Seoktae Kang, professor at the Korea Advanced Institute of Science and Technology, and Keon-Ham Kim, professor at Pukyung National University, who first discovered the LDH material.

The team evaluated the LDH material in river water, tap water and wastewater. And, according to Rice, that material’s unique copper-aluminum layers and charge imbalances created an ideal binding environment to capture PFAS molecules.

“To my astonishment, this LDH compound captured PFAS more than 1,000 times better than other materials,” Chung, lead author of the study and now a fellow at Rice’s WaTER (Water Technologies, Entrepreneurship and Research) Institute and Sustainability Institute, said in a news release. “It also worked incredibly fast, removing large amounts of PFAS within minutes, about 100 times faster than commercial carbon filters.”

Next, Chung, along with Rice professors Pedro Alvarez and James Tour, worked to develop an eco-friendly, sustainable method of thermally decomposing the PFAS captured on the LDH material. They heated saturated material with calcium carbonate, which eliminated more than half of the trapped PFAS without releasing toxic by-products.

The team believes the study’s results could potentially have large-scale applications in industrial cleanups and municipal water treatments.

“We are excited by the potential of this one-of-a-kind LDH-based technology to transform how PFAS-contaminated water sources are treated in the near future,” Wong added in the news release. “It’s the result of an extraordinary international collaboration and the creativity of young researchers.”

---

This article originally appeared on our sister site, InnovationMap.