Two Houston communities have received funding for programming and workforce development within climate resilience. Photo via Getty Images

The city of Houston has secured a $20 million grant from the Environmental Protection Agency to be used to build climate and energy resilience in two local underserved communities.

The Houston Health Department's funding comes from the EPA's Community Change program and will benefit the Greater Fifth Ward and Kashmere Gardens, regions that have faced contamination from the neighboring Union Pacific Railroad site. This grant follows two prior EPA grants from the Vulnerable to Vibrant series that were awarded in 2023.

"Through this grant, we will also aim to enhance a state-of-the-art flood alert system that provides advance warning," Loren Hopkins, HHD's chief environmental science officer, says in a news release. "We will promote and provide education regarding an air permit application warning system, plant fruit trees for flood, heat, and pollution mitigation, develop a hyper-local neighborhood resilience plan, and establish a Houston Environmental Justice Advisory Committee."

The initial $1 million grant will span three years and includes several local partners: HHD, Black United Fund of Texas, Houston Community College, My Brother's Keeper - Houston, City of Houston Solid Waste Management Department, and Environmental Defense Fund. It will fund the creation of free solar workforce development program with the hopes of installing and operating a community solar farm.

A second $500,000 grant will find paid internships to residents for solar deployment in the community and will be led by HHD in partnership with BUFTX, University of Houston Center for Sustainability and Resilience, Air Alliance, Houston Wilderness, and Rice University SSPEED Center/Fang Research Group.

The ultimate goal of these freshly funded initiatives, according to the city, is to strengthen HHD and its partners' efforts in establishing a solar energy system for the community in order to advance the neighborhood’s resilience.

Texas Solar For All Coalition and Clean Energy Fund of Texas were two of the 60 recipients of the Solar for All grant competition. Photo via Getty Images

Two Texas coalitions part of $7B solar power federal grant program

shine on

The Biden administration delivered an Earth Day gift with the news that 60 grantees will receive $7 billion in grant awards.

Texas Solar For All Coalition and Clean Energy Fund of Texas were two of the 60 recipients of the Solar for All grant competition. The awardees will provide solar energy to 900,000 low-income households in all 50 states. This is expected to generate an estimated 200,000 jobs as part of the Environmental Protection Agency’s Greenhouse Gas Reduction Fund, which includes $405,820,000 in Texas.

“President Biden’s clean energy plan is creating good-paying jobs, reducing emissions, and saving Americans money on their utility bills,” Climate Power Interim States Managing Director André Crombie says in a news release. “Thanks to President Biden, low-income families across Texas will have access to cleaner, cheaper power.”

The Solar for All Program, which was started by the Biden-Harris administration, aims to reduce carbon dioxide equivalent emissions by 30 million metric tons over five years, and hopes to improve grid reliability and climate resilience. The award is also part of the Justice40 initiative that aims to ensure that historically underserved communities are given resources to help fight pollution and climate change.

Led by Harris County, Texas SFA is a coalition of Texas counties and cities (Dallas County, Tarrant County, Houston, Austin, San Antonio, and Waco) that serve over 11 million low-income Texans.

“HARC is proud to be part of the Texas Solar for All Coalition and grateful for the significant support received from the U.S. Environmental Protection Agency to help bring the benefits of clean solar power to low-income and disadvantaged communities across Texas," John Hall, HARC’s President and CEO, says in a news release. "Low-income Texans find themselves facing rising energy bills, energy insecurity, and disconnection from the electric grid due to their limited incomes and health-compromising conditions during increasingly frequent extreme weather events.

"Through this Coalition’s delivery of distributed solar, we will be able to provide much-needed locally generated electricity, substantially reduced emissions, and improve the lives of many Texans."

Texas SFA will support home solar panel installation, support workforce training for residents, and battery storage upgrades. The Clean Energy Fund of Texas partnered with Texas Southern University to support clean energy investments at HBCUs and other minority-serving institutions in 19 states.

According to a news release, at least 35 percent of grant awardees have engaged local or national labor unions for the estimated 200,000 jobs that will be created.

A new initiative from federal agencies hopes to enhance access to information about greenhouse gas emissions. Photo via nasa.gov

NASA, EPA share plans for greenhouse gas initiative at COP28

need some space

Two of Houston's top industries are in for a collaboration of sorts, according to a recent announcement at the 28th annual United Nations Climate Conference, or COP28.

NASA, the United States Environmental Protection Agency, and other U.S. agencies have unveiled the plans for the U.S. Greenhouse Gas Center, a hub for collaboration for the federal agencies and nonprofit and private sector partners.

“NASA data is essential to making the changes needed on the ground to protect our climate. The U.S. Greenhouse Gas Center is another way the Biden-Harris Administration is working to make critical data available to more people – from scientists running data analyses, to government officials making decisions on climate policy, to members of the public who want to understand how climate change will affect them,” NASA Administrator Bill Nelson says in a news release. “We’re bringing space to Earth to benefit communities across the country.”

NASA is taking the lead implementing agency position for the new center, which will be run by Argyro Kavvada, center program manager, who's based in NASA headquarters in Washington. The EPA, the National Institute of Standards and Technology, and the National Oceanic and Atmospheric Administration will also be involved and provide greenhouse gas datasets and analysis tools.

“A goal of the U.S. Greenhouse Gas Center is to accelerate the collaborative use of Earth science data,” Kavvada says. “We’re working to get the right data into the hands of people who can use it to manage and track greenhouse gas emissions.”

The center’s data catalog will be available online and target three areas: greenhouse gas emissions from humans, naturally occurring greenhouse gas emissions, and large methane emission event identification and quantification from aircraft and space-based data.

According to the release, the center is one piece of the current administration's effort to amplify information on greenhouse gas emissions, as outlined in the recently released National Strategy to Advance an Integrated U.S. Greenhouse Gas Measurement, Monitoring, and Information System.

All aboard the bus to greener transportation. Photo via Unsplash

HISD receives millions in funding from EPA for clean school buses

seeing green

Houston Independent School District is hopping on the city's net-zero carbon emissions bus, so to speak, thanks to more than $6.2 million in funding that came from the Environmental Protection Agency last year.

The funds are part of the EPA's Clean School Bus Program Fiscal Year 2022 rebate competition, which will award nearly $51 million in funds from President Biden’s Bipartisan Infrastructure Law to Texas school districts, and $965 million in total to districts around the country.

Houston's $6.2 million will go toward 25 new school buses, according to a statement from the EPA. Fifteen of the vehicles will be brand-new electric buses.

"Taking steps to make our school buses greener while remaining safe and effective is not only imperative for the wellbeing of students and bus drivers, but also for the public at large,” Houston Congressman Al Green said in a statement. “I applaud this announcement by the EPA under President Biden’s leadership. I look forward to seeing the positive impact that this outstanding award to purchase electric and propane school buses will have on reducing our carbon footprint.”

HISD's next step was to submit Payment Request Forms with purchase orders that shows the district has ordered the new buses and eligible infrastructure.

The district is among 13 Texas school districts to receive funding. Dallas ISD, the second largest school district in the state behind HISD, was awarded roughly $7.6 million. Killeen ISD and Socorro ISD received the largest sums among the districts, totalling nearly $9.9 million in funding each.

At the time of the statement from October, the EPA had selected 389 applications across the country totaling $913 million to support the purchase of 2,463 buses, mainly in areas serving low-income, rural, and/or Tribal students. More applications are under review, and the EPA plans to announce additional districts that will receive funding, bringing the total investment to the full $965 million, in the coming weeks, according to a statement.

The EPA intends to make available another $1 billion for clean school buses in Fiscal Year 2023.

------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH's $44 million mass timber building slashed energy use in first year

building up

The University of Houston recently completed assessments on year one of the first mass timber project on campus, and the results show it has had a major impact.

Known as the Retail, Auxiliary, and Dining Center, or RAD Center, the $44 million building showed an 84 percent reduction in predicted energy use intensity, a measure of how much energy a building uses relative to its size, compared to similar buildings. Its Global Warming Potential rating, a ratio determined by the Intergovernmental Panel on Climate Change, shows a 39 percent reduction compared to the benchmark for other buildings of its type.

In comparison to similar structures, the RAD Center saved the equivalent of taking 472 gasoline-powered cars driven for one year off the road, according to architecture firm Perkins & Will.

The RAD Center was created in alignment with the AIA 2030 Commitment to carbon-neutral buildings, designed by Perkins & Will and constructed by Houston-based general contractor Turner Construction.

Perkins & Will’s work reduced the building's carbon footprint by incorporating lighter mass timber structural systems, which allowed the RAD Center to reuse the foundation, columns and beams of the building it replaced. Reused elements account for 45 percent of the RAD Center’s total mass, according to Perkins & Will.

Mass timber is considered a sustainable alternative to steel and concrete construction. The RAD Center, a 41,000-square-foot development, replaced the once popular Satellite, which was a food, retail and hangout center for students on UH’s campus near the Science & Research Building 2 and the Jack J. Valenti School of Communication.

The RAD Center uses more than a million pounds of timber, which can store over 650 metric tons of CO2. Aesthetically, the building complements the surrounding campus woodlands and offers students a view both inside and out.

“Spaces are designed to create a sense of serenity and calm in an ecologically-minded environment,” Diego Rozo, a senior project manager and associate principal at Perkins & Will, said in a news release. “They were conceptually inspired by the notion of ‘unleashing the senses’ – the design celebrating different sights, sounds, smells and tastes alongside the tactile nature of the timber.”

In addition to its mass timber design, the building was also part of an Energy Use Intensity (EUI) reduction effort. It features high-performance insulation and barriers, natural light to illuminate a building's interior, efficient indoor lighting fixtures, and optimized equipment, including HVAC systems.

The RAD Center officially opened Phase I in Spring 2024. The third and final phase of construction is scheduled for this summer, with a planned opening set for the fall.

Experts on U.S. energy infrastructure, sustainability, and the future of data

Guest column

Digital infrastructure is the dominant theme in energy and infrastructure, real estate and technology markets.

Data, the byproduct and primary value generated by digital infrastructure, is referred to as “the fifth utility,” along with water, gas, electricity and telecommunications. Data is created, aggregated, stored, transmitted, shared, traded and sold. Data requires data centers. Data centers require energy. The United States is home to approximately 40% of the world's data centers. The U.S. is set to lead the world in digital infrastructure advancement and has an opportunity to lead on energy for a very long time.

Data centers consume vast amounts of electricity due to their computational and cooling requirements. According to the United States Department of Energy, data centers consume “10 to 50 times the energy per floor space of a typical commercial office building.” Lawrence Berkeley National Laboratory issued a report in December 2024 stating that U.S. data center energy use reached 176 TWh by 2023, “representing 4.4% of total U.S. electricity consumption.” This percentage will increase significantly with near-term investment into high performance computing (HPC) and artificial intelligence (AI). The markets recognize the need for digital infrastructure build-out and, developers, engineers, investors and asset owners are responding at an incredible clip.

However, the energy demands required to meet this digital load growth pose significant challenges to the U.S. power grid. Reliability and cost-efficiency have been, and will continue to be, two non-negotiable priorities of the legal, regulatory and quasi-regulatory regime overlaying the U.S. power grid.

Maintaining and improving reliability requires physical solutions. The grid must be perfectly balanced, with neither too little nor too much electricity at any given time. Specifically, new-build, physical power generation and transmission (a topic worthy of another article) projects must be built. To be sure, innovative financial products such as virtual power purchase agreements (VPPAs), hedges, environmental attributes, and other offtake strategies have been, and will continue to be, critical to growing the U.S. renewable energy markets and facilitating the energy transition, but the U.S. electrical grid needs to generate and move significantly more electrons to support the digital infrastructure transformation.

But there is now a third permanent priority: sustainability. New power generation over the next decade will include a mix of solar (large and small scale, offsite and onsite), wind and natural gas resources, with existing nuclear power, hydro, biomass, and geothermal remaining important in their respective regions.

Solar, in particular, will grow as a percentage of U.S grid generation. The Solar Energy Industries Association (SEIA) reported that solar added 50 gigawatts of new capacity to the U.S. grid in 2024, “the largest single year of new capacity added to the grid by an energy technology in over two decades.” Solar is leading, as it can be flexibly sized and sited.

Under-utilized technology such as carbon capture, utilization and storage (CCUS) will become more prominent. Hydrogen may be a potential game-changer in the medium-to-long-term. Further, a nuclear power renaissance (conventional and small modular reactor (SMR) technologies) appears to be real, with recent commitments from some of the largest companies in the world, led by technology companies. Nuclear is poised to be a part of a “net-zero” future in the United States, also in the medium-to-long term.

The transition from fossil fuels to zero carbon renewable energy is well on its way – this is undeniable – and will continue, regardless of U.S. political and market cycles. Along with reliability and cost efficiency, sustainability has become a permanent third leg of the U.S. power grid stool.

Sustainability is now non-negotiable. Corporate renewable and low carbon energy procurement is strong. State renewable portfolio standards (RPS) and clean energy standards (CES) have established aggressive goals. Domestic manufacturing of the equipment deployed in the U.S. is growing meaningfully and in politically diverse regions of the country. Solar, wind and batteries are increasing less expensive. But, perhaps more importantly, the grid needs as much renewable and low carbon power generation as possible - not in lieu of gas generation, but as an increasingly growing pairing with gas and other technologies. This is not an “R” or “D” issue (as we say in Washington), and it's not an “either, or” issue, it's good business and a physical necessity.

As a result, solar, wind and battery storage deployment, in particular, will continue to accelerate in the U.S. These clean technologies will inevitably become more efficient as the buildout in the U.S. increases, investments continue and technology advances.

At some point in the future (it won’t be in the 2020s, it could be in the 2030s, but, more realistically, in the 2040s), the U.S. will have achieved the remarkable – a truly modern (if not entirely overhauled) grid dependent largely on a mix of zero and low carbon power generation and storage technology. And when this happens, it will have been due in large part to the clean technology deployment and advances over the next 10 to 15 years resulting from the current digital infrastructure boom.

---

Hans Dyke and Gabbie Hindera are lawyers at Bracewell. Dyke's experience includes transactions in the electric power and oil and gas midstream space, as well as transactions involving energy intensive industries such as data storage. Hindera focuses on mergers and acquisitions, joint ventures, and public and private capital market offerings.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

new findings

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.