Andrew Yang offers entrepreneurial advice to startups in the thriving Innovation Corridor seated in midtown Houston. Photo courtesy of Lauren M. Postler/Andrew Yang.

It’s not every day that an entrepreneur gets grilled on their go-to-market-plans by a former presidential candidate, but for a few nascent businesses, that’s just what happened last Friday at Greentown Labs Houston.

Grilled is perhaps too strong a term, as Andrew Yang, an entrepreneur turned politician, conversed convivially with a half-dozen growing businesses in the thriving Innovation Corridor seated in midtown Houston. Yang listened carefully to each company’s elevator pitch, interrupting only to exclaim, “that’s so cool!” and “congratulations, man!” like an awestruck coed before asking thoughtful questions about the journey ahead for each entrepreneur.

Lara Cottingham, vice president of strategy, policy, and climate impact at Greentown Labs Houston, set the tone for the tour with an overview of Greentown Labs and the entrepreneurial efforts in energy transition it supports.

“[Greentown Labs was] founded 12 years ago. We’ve supported about 550 startups. Our startups have created over 24,000 jobs – and that’s just in Boston and Texas,” says Cottingham. “We don’t really know how to fully measure everywhere, but they are operating globally.

“Our startups have raised about $4 billion dollars. Half of that was last year,” Cottingham continues. “When we talk about now being the time to be in climatetech, now is the time.”

The tour begins with WIP International Services, a start up solving the problem of thirst and water scarcity by extracting moisture from humid environments and converting it into usable water.

pouring water into tall glassesWIP International Services aims to make drinking water more readily available in humid locations. Image via Shutterstock.

“We can produce a purely distilled product, or a mineralized, pH balanced product for potable water,” explains Tracy L. Jackson, CEO of WIP International Services LLC.

The small group tagging along with Yang cheers the idea of creating clean water to drink while lowering the humidity of their homes, and effectively, their demand on energy for air-conditioning in a city that is now well into three-digit summer temperatures with average outdoor humidity above 70 percent.

Jackson almost stumbled into her startup by accident 8 years ago. She was visiting a site in Louisiana working on algae solutions, where she encountered an earlier (and much larger and noisier) model of the unit that stood in front of her now, no bigger than a standard water cooler. Inspired by scenes she witnessed in Africa during her tenure with an oilfield services company, Jackson knew this was a solution too good to keep quiet.

“Because I had been in Africa – I worked in an oil and gas services company – I had seen people standing in line for water from a water well in a village. And I thought, ‘this would be perfect for that situation,’” Jackson tells the tour group. “We now have developing relationships in Africa as well as Mexico on large scale projects for atmospheric water generation.”

At the next stop, Reid Carrazzone, president and CEO of Top Grain Technologies, softly explains how he and Zack Cordero, chief scientific officer, address the challenges of long-lead times and harsh environments impeding the ability to get hydrogen-fired turbines 100 percent hydrogen-fired.

close up of 3D printer making metal objectTop Grain Technologies resolves how to make 3D printed metals more heat resistant. Image via Shutterstock.

“We are commercializing a heat treatment invented at MIT that will enable 3D-printed metal materials to serve in combustion turbine engines,” Carrazzone tells Yang. “Traditionally, 3D-printed metals are not well-suited to serving the environments of high temperature/high stress that you’d find in jet engines and natural gas settings.

“These [3D-printed] materials, certain classes of them, can be uniquely hydrogen-compatible, as well as have temperature capabilities in excess of the existing materials today,” Carrazzone says. “They will need our heat treatment to bridge that final gap in properties.”

Yang lights up with at the prospect that the duo may have come up with a truly unique solution, even suggesting the company may be in a name-your-own-price situation. The Top Grain Technologies team accepts the compliment with humility, insisting it’s more about solving the simple problems one step at a time.

Companies that Yang met along the Greentown Labs workshop floor represent just a fraction of the innovation proliferating across Houston in recent years, each with a different focus on energy sustainability and the circular economy. Maybe one day Yang, Jackson, and Carrazzone will look back on this interaction and think, “I knew them when…” Only time, and continued tending to the entrepreneurial spirit, will tell.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Experts on U.S. energy infrastructure, sustainability, and the future of data

Guest column

Digital infrastructure is the dominant theme in energy and infrastructure, real estate and technology markets.

Data, the byproduct and primary value generated by digital infrastructure, is referred to as “the fifth utility,” along with water, gas, electricity and telecommunications. Data is created, aggregated, stored, transmitted, shared, traded and sold. Data requires data centers. Data centers require energy. The United States is home to approximately 40% of the world's data centers. The U.S. is set to lead the world in digital infrastructure advancement and has an opportunity to lead on energy for a very long time.

Data centers consume vast amounts of electricity due to their computational and cooling requirements. According to the United States Department of Energy, data centers consume “10 to 50 times the energy per floor space of a typical commercial office building.” Lawrence Berkeley National Laboratory issued a report in December 2024 stating that U.S. data center energy use reached 176 TWh by 2023, “representing 4.4% of total U.S. electricity consumption.” This percentage will increase significantly with near-term investment into high performance computing (HPC) and artificial intelligence (AI). The markets recognize the need for digital infrastructure build-out and, developers, engineers, investors and asset owners are responding at an incredible clip.

However, the energy demands required to meet this digital load growth pose significant challenges to the U.S. power grid. Reliability and cost-efficiency have been, and will continue to be, two non-negotiable priorities of the legal, regulatory and quasi-regulatory regime overlaying the U.S. power grid.

Maintaining and improving reliability requires physical solutions. The grid must be perfectly balanced, with neither too little nor too much electricity at any given time. Specifically, new-build, physical power generation and transmission (a topic worthy of another article) projects must be built. To be sure, innovative financial products such as virtual power purchase agreements (VPPAs), hedges, environmental attributes, and other offtake strategies have been, and will continue to be, critical to growing the U.S. renewable energy markets and facilitating the energy transition, but the U.S. electrical grid needs to generate and move significantly more electrons to support the digital infrastructure transformation.

But there is now a third permanent priority: sustainability. New power generation over the next decade will include a mix of solar (large and small scale, offsite and onsite), wind and natural gas resources, with existing nuclear power, hydro, biomass, and geothermal remaining important in their respective regions.

Solar, in particular, will grow as a percentage of U.S grid generation. The Solar Energy Industries Association (SEIA) reported that solar added 50 gigawatts of new capacity to the U.S. grid in 2024, “the largest single year of new capacity added to the grid by an energy technology in over two decades.” Solar is leading, as it can be flexibly sized and sited.

Under-utilized technology such as carbon capture, utilization and storage (CCUS) will become more prominent. Hydrogen may be a potential game-changer in the medium-to-long-term. Further, a nuclear power renaissance (conventional and small modular reactor (SMR) technologies) appears to be real, with recent commitments from some of the largest companies in the world, led by technology companies. Nuclear is poised to be a part of a “net-zero” future in the United States, also in the medium-to-long term.

The transition from fossil fuels to zero carbon renewable energy is well on its way – this is undeniable – and will continue, regardless of U.S. political and market cycles. Along with reliability and cost efficiency, sustainability has become a permanent third leg of the U.S. power grid stool.

Sustainability is now non-negotiable. Corporate renewable and low carbon energy procurement is strong. State renewable portfolio standards (RPS) and clean energy standards (CES) have established aggressive goals. Domestic manufacturing of the equipment deployed in the U.S. is growing meaningfully and in politically diverse regions of the country. Solar, wind and batteries are increasing less expensive. But, perhaps more importantly, the grid needs as much renewable and low carbon power generation as possible - not in lieu of gas generation, but as an increasingly growing pairing with gas and other technologies. This is not an “R” or “D” issue (as we say in Washington), and it's not an “either, or” issue, it's good business and a physical necessity.

As a result, solar, wind and battery storage deployment, in particular, will continue to accelerate in the U.S. These clean technologies will inevitably become more efficient as the buildout in the U.S. increases, investments continue and technology advances.

At some point in the future (it won’t be in the 2020s, it could be in the 2030s, but, more realistically, in the 2040s), the U.S. will have achieved the remarkable – a truly modern (if not entirely overhauled) grid dependent largely on a mix of zero and low carbon power generation and storage technology. And when this happens, it will have been due in large part to the clean technology deployment and advances over the next 10 to 15 years resulting from the current digital infrastructure boom.

---

Hans Dyke and Gabbie Hindera are lawyers at Bracewell. Dyke's experience includes transactions in the electric power and oil and gas midstream space, as well as transactions involving energy intensive industries such as data storage. Hindera focuses on mergers and acquisitions, joint ventures, and public and private capital market offerings.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

new findings

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Oxy subsidiary granted landmark EPA permits for carbon capture facility

making progress

Houston’s Occidental Petroleum Corp., or Oxy, and its subsidiary 1PointFive announced that the U.S Environmental Protection Agency approved its Class VI permits to sequester carbon dioxide captured from its STRATOS Direct Air Capture (DAC) facility near Odessa. These are the first such permits issued for a DAC project, according to a news release.

The $1.3 billion STRATOS project, which 1PointFive is developing through a joint venture with investment manager BlackRock, is designed to capture up to 500,000 metric tons of CO2 annually and is expected to begin commercial operations this year. DAC technology pulls CO2 from the air at any location, not just where carbon dioxide is emitted. Major companies, such as Microsoft and AT&T, have secured carbon removal credit agreements through the project.

The permits are issued under the Safe Drinking Water Act's Underground Injection Control program. The captured CO2 will be stored in geologic formations more than a mile underground, meeting the EPA’s review standards.

“This is a significant milestone for the company as we are continuing to develop vital infrastructure that will help the United States achieve energy security,” Vicki Hollub, Oxy president and CEO, said in a news release.“The permits are a catalyst to unlock value from carbon dioxide and advance Direct Air Capture technology as a solution to help organizations address their emissions or produce vital resources and fuels.”

Additionally, Oxy and 1PointFive announced the signing of a 25-year offtake agreement for 2.3 million metric tons of CO2 per year from CF Industries’ upcoming Bluepoint low-carbon ammonia facility in Ascension Parish, Louisiana.

The captured CO2 will be transported to and stored at 1PointFive’s Pelican Sequestration Hub, which is currently under development. Eventually, 1PointFive’s Pelican hub in Louisiana will include infrastructure to safely and economically sequester industrial emissions in underground geologic formations, similar to the STRATOS project.

“CF Industries’ and its partners' confidence in our Pelican Sequestration Hub is a validation of our expertise managing carbon dioxide and how we collaborate with industrial organizations to become their commercial sequestration partner,” Jeff Alvarez, President of 1PointFive Sequestration, said in a news release.

1PointFive is storing up to 20 million tons of CO2 per year, according to the company.

“By working together, we can unlock the potential of American manufacturing and energy production, while advancing industries that deliver high-quality jobs and economic growth,” Alvarez said in a news release.