Joseph Powell, founding director of UH Energy Transition Institute, discusses the institute's role in the clean energy landscape and their corporate partnerships. Photo via uh.edu

Joseph Powell is about six months into his role as the founding director of the University of Houston’s Shell-backed Energy Transition Institute but already is eyeing how the Institute can aid generations to come through clean energy.

The Energy Transition Institute, which launched a year ago through a $10 million grant from Shell USA Inc. and Shell Global Solutions (US) Inc., is focused on three core areas of clean energy: hydrogen, carbon management, and circular plastics. Powell previously served as chief scientist for Shell as a chemical engineer and has co-invented 60 granted patents.

Powell discussed with EnergyCapital the projects ETI is excited for, opportunities for students to get involved, and their partnership with corporations.

EnergyCapitalHTX: To get started with a little bit of background, the University of Houston Energy Transition Institute was established in March 2020 with a $10 million commitment from Shell. So why did the university decide now is the time for an institute like this to be formed?

Joseph Powell: Houston is the energy capital, and the energy transition has been on everyone's mind, and so certainly now is the right time for an offering to industry to look at how to coordinate activities in that space. We reached out to Shell, which has really made strong commitments in terms of making the pivot from being an oil and gas company to being an energy company and really embracing the energy transition and everything that goes along with that. There was a strong relationship between University of Houston and Shell on the recruitment side, so a number of the Shell staff and employees. UH has been one of the principal suppliers of talent to Shell as an organization, also on the research side in terms of research around hydrogen chemical reaction engineering, and other aspects on the social and community benefits side of what happens with energy. So, there's been quite a bit of overlap. I think Shell saw it as really important to be partnering in the energy capital of the world, to be providing that pipeline of talent for what's going to be needed for the energy transition.

EC: You decided to come to UH to lead the Energy Transition Institute over retiring. What inspired you to take on this role? What’s your vision for the organization?

JP: It was an opportunity I couldn't pass up. I had worked 36 years in the industry, for Exxon and 32 years with Shell. The elements of the Energy Transition Institute were something that I was very passionate about working on with Shell, since I've been promoted to chief scientist of chemical engineering for the growth global group in 2006. I was involved in helping Shell set its strategy to become a full energy company and chemicals, not just oil and gas. I was involved in the elements of that transition, and then I also had a very strong interest in sustainability in terms of how to manage not only the greenhouse gas footprints of the company, but also elements on the chemical side that go with sustainability.

Shell wanted to combine those two into an energy transition Institute, circular plastics and chemicals were a major focus of that, along with hydrogen as a clean vector for future energy. I was involved with Shell and helped to put together some of their moonshots for how hydrogen can be used in the future economy. The Biden administration has now termed moonshots as Earthshots for the US to be able to use hydrogen as that clean vector to deliver renewable and other forms of energy going forward, as well as carbon management, so I was heavily involved Shell’s planning for how to deal with CO2, whether to capture it and put it underground, or capture it and use it. I'm on the National Academy study team right now, looking at what is the potential to be using some of that CO2 into products as opposed to storing it underground. All of those elements were important and in line with things that I care about and have been heavily involved with, throughout my career. So, why retire when one can be engaged with all of those types of things and now help the next generation come up to speed and take that over and drive it into 2050 and beyond what needs to be done?

EC: How is UH engaging with corporate partners? Why is a collaboration of this nature important?

JP: This collaboration is important for several reasons. One is that we are that bridge to the students and workforce of the future. It's very important for this generation to be as excited about careers and energy as I was, coming up during the energy crisis of the last century and we thought we were absolutely out of energy. We had rationing of gasoline and other things going on, back when I was in high school. Now we have many sources of energy, in a certain sense an energy abundance, but we really need to be looking at the environmental footprint, impact on the climate and then what forms of energy we want to be using. Then you add to that the issue with the impact of plastics on the environment, and how to drive to a more circular economy where we're recycling those and having less of that escape into the environment; those are all strong drivers of what needs to be done going forward.

It takes a lot of energy to process chemicals, plastics, and materials in a circular manner. Developing that workforce of the future means we need the students who want to engage in these efforts and making sure that those opportunities are available across the board to people of all different economic backgrounds in terms of participating in what is going to be just a tremendous growth engine for the future in terms of jobs and opportunities. You're looking at trillions of dollars of annual investment that's needed to manage the energy transition, so it's a really exciting opportunity for those who want to be going into those careers. It's not just science and engineering, but also jobs in law, policy, and communications, because there's a tremendous need for knowledge and background in the energy transition in order to be effective in that going forward. We want to have all the good talent that can be attracted to that arena as a way to address the problem. It's a grand challenge.

We want to make sure that in addition to the research opportunities, since UH is a Tier 1 research institute, we focus on working very closely with industry; there's a number of multinational and local chemical and energy companies that have their research centers and home offices in the Houston area. We can develop those close relationships between the researchers and business interests involved with the students at the university, because we're right here and co-located and can really develop some very strong working teams in that space. It's been exciting to be responding to the federal grant opportunities, which have been abundant in the last year and a half and putting together proposals, to be engaging the industry investigators along with the university students to work on some of those problems. It's a good win-win for both.

We also get to be a trusted voice in the overall equation because there's a lot to know and understand about energy and circular chemicals. They’re more nuanced and complex than what may appear in the news headlines in terms of understanding the trade-offs that have to be worked out, in order to optimize for everyone who's involved. The university can bring in that broad set of stakeholders and have a conversation and make sure that all those co-benefits are understood and the issues that come with energy infrastructure are also worked through for people impacted by the infrastructure but also the benefits of clean air, cleaner environment, and reduced risk of climate change.

EC: Are there any particular technologies the institute is focusing on or excited about at the moment?

JP: I'm really big on hydrogen as an energy vector for the future. Currently, we use hydrogen primarily in refining petroleum into gasoline and diesel and also making fertilizer which is very important for mankind. There was a Nobel Prize on that, you know, more than 100 years ago, and the importance of being able to grow food at rates the planet’s population requires.

Hydrogen now is being looked at, beyond those applications as essentially the diesel or gasoline of the future and also the liquefied natural gas of the future. It can be a clean vector, because you can put it into a fuel cell and generate energy cleanly where water is the only product of that reaction. That can be used to drive quite a number of energy related processes that are currently using combustion of fossil fuels that contain carbon. One of the interesting things is that hydrogen can be supplied to trucks and buses, agricultural tractors, and such. Most of the goods that you're buying today are produced in warehouses where the forklifts are running on hydrogen fuel cells rather than batteries because they refuel so quickly. It's cleaner than emissions. So then there's good air quality in the warehouses. There are more than 60,000 hydrogen-fueled forklifts now in the US, because of that value proposition. We see that for this heavy duty transportation, hydrogen is that very clean vector, you can make it by taking renewable energy and splitting water into hydrogen so it can be very clean. It can also be made from the abundant natural gas we have in Texas and storing the CO2 underground and then using the clean hydrogen for that fuel. That's one of the very exciting new value propositions that go with the Institute.

The second one is carbon management. The Energy Transition Institute will sit within UH Energy, which was founded a number of years ago and so it's looking at the transition part of energy, but UH Energy has its Center for Carbon Management in Energy, which has been focusing capturing and storing CO2 underground off of the existing facilities that we have up and running. They're run by Chuck McConnell but what we will do with ETI is extend that more onto the research side for some of the new things coming along in terms of capturing and utilizing CO2. I'm on a national academy study looking at where and how we want to be turning that CO2 into usable products, using energy and hydrogen, to make a number of those projects. That synergizes with hydrogen as part of the Institute.

Capturing and converting CO2 into usable products is certainly one of the exciting opportunities and then also to reuse those products we've already been making. There are also so many nice things you can do with hydrogen in terms of energy storage, and also helping to upgrade some of the carbon dioxide into usable products, but then also bio feedstock, you can take crop residues or trees and other energy type materials and use hydrogen to upgrade those into those types of plastic materials as well. That's another place where hydrogen is combined with managing a carbon resource to make a more sustainable plastic or polymer.

EC: With UH’s strong emphasis on research and entrepreneurship, is the Institute playing to these strengths within its programming and opportunities to further this trend and if so how?

JP: The money that's been funded by Shell into the launch of the Institute, and then that's been leveraged up to the $52 million point through various donors matching funds. With that, we will be hiring additional faculty to work in this space so that we can further expand the research that's being done. Each new faculty member becomes the opportunity for three things: more coursework in the area around energy, which impacts the student education; the hiring of graduate students who will be doing research; and then that also translates into undergraduate opportunities to be working in the labs and learning. We're also going to be building a new innovation hub in the center of campus here. It will be right across from the MD Anderson library where the old College of Technology building had been located.

On the first floor, there will be a makerspace where the students with ideas and people from the community will be able to come in and have access to 3D printers and other types of materials to put their widgets and prototypes together. On the second floor, then will be the Wolff Center for Entrepreneurship, which has the top undergraduate program in terms of entrepreneurship so they will hold mentorships, present there, in classroom-like settings, getting people involved with launching an idea and taking it forth into the commercial marketplace. The Energy Transition Institute will be on the third floor because so much of that innovation will be involved in the space of energy transition, which is really the main growth engine for expanding research at the university. Then we'll have on the top floor some laboratories, not only on chemistry and materials, but also on data science. And so we have a Data Science Institute, set up by HPE here at UH, looking at for example how artificial intelligence, machine learning and all those kinds of things help you innovate in the energy materials and processes.

Having a hub that combines all of that together really is an attraction to get all those players together on campus and will be really a key to making all this happen. It's a really exciting place to get involved and if you're a student, having all that in front of you, in terms of opportunity, we think it'd be a great attraction.

------

This conversation has been edited for brevity and clarity.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Mars Materials makes breakthrough in clean carbon fiber production

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

Tesla no longer world's biggest EV maker as sales drop for second year

EV Update

Tesla lost its crown as the world’s bestselling electric vehicle maker as a customer revolt over Elon Musk’s right-wing politics, expiring U.S. tax breaks for buyers and stiff overseas competition pushed sales down for a second year in a row.

Tesla said that it delivered 1.64 million vehicles in 2025, down 9% from a year earlier.

Chinese rival BYD, which sold 2.26 million vehicles last year, is now the biggest EV maker.

It's a stunning reversal for a car company whose rise once seemed unstoppable as it overtook traditional automakers with far more resources and helped make Musk the world's richest man. The sales drop came despite President Donald Trump's marketing effort early last year when he called a press conference to praise Musk as a “patriot” in front of Teslas lined up on the White House driveway, then announced he would be buying one, bucking presidential precedent to not endorse private company products.

For the fourth quarter, Tesla sales totaled 418,227, falling short of even the much reduced 440,000 target that analysts recently polled by FactSet had expected. Sales were hit hard by the expiration of a $7,500 tax credit for electric vehicle purchases that was phased out by the Trump administration at the end of September.

Tesla stock fell 2.6% to $438.07 on Friday.

Even with multiple issues buffeting the company, investors are betting that Tesla CEO Musk can deliver on his ambitions to make Tesla a leader in robotaxi services and get consumers to embrace humanoid robots that can perform basic tasks in homes and offices. Reflecting that optimism, the stock finished 2025 with a gain of approximately 11%.

The latest quarter was the first with sales of stripped-down versions of the Model Y and Model 3 that Musk unveiled in early October as part of an effort to revive sales. The new Model Y costs just under $40,000 while customers can buy the cheaper Model 3 for under $37,000. Those versions are expected to help Tesla compete with Chinese models in Europe and Asia.

For fourth-quarter earnings coming out in late January, analysts are expecting the company to post a 3% drop in sales and a nearly 40% drop in earnings per share, according to FactSet. Analysts expect the downward trend in sales and profits to eventually reverse itself as 2026 rolls along.

Musk said earlier last year that a “major rebound” in sales was underway, but investors were unruffled when that didn't pan out, choosing instead to focus on Musk's pivot to different parts of business. He has has been saying the future of the company lies with its driverless robotaxis service, its energy storage business and building robots for the home and factory — and much less with car sales.

Tesla started rolling out its robotaxi service in Austin in June, first with safety monitors in the cars to take over in case of trouble, then testing without them. The company hopes to roll out the service in several cities this year.

To do that successfully, it needs to take on rival Waymo, which has been operating autonomous taxis for years and has far more customers. It also will also have to contend with regulatory challenges. The company is under several federal safety investigations and other probes. In California, Tesla is at risk of temporarily losing its license to sell cars in the state after a judge there ruled it had misled customers about their safety.

“Regulatory is going to be a big issue,” said Wedbush Securities analyst Dan Ives, a well-known bull on the stock. “We're dealing with people's lives.”

Still, Ives said he expects Tesla's autonomous offerings will soon overcome any setbacks.

Musk has said he hopes software updates to his cars will enable hundreds of thousands of Tesla vehicles to operate autonomously with zero human intervention by the end of this year. The company is also planning to begin production of its AI-powered Cybercab with no steering wheel or pedals in 2026.

To keep Musk focused on the company, Tesla’s directors awarded Musk a potentially enormous new pay package that shareholders backed at the annual meeting in November.

Musk scored another huge windfall two weeks ago when the Delaware Supreme Court reversed a decision that deprived him of a $55 billion pay package that Tesla doled out in 2018.

Musk could become the world's first trillionaire later this year when he sells shares of his rocket company SpaceX to the public for the first time in what analysts expect would be a blockbuster initial public offering.

Renewables to play greater role in powering data centers, JLL says

Data analysis

Renewable energy is evolving as the primary energy source for large data centers, according to a new report.

The 2026 Global Data Center Outlook from commercial real estate services giant JLL points out that the pivot toward big data centers being powered by renewable energy stems from rising electricity costs and tightening carbon reduction requirements. In the data center sector, renewable energy, such as solar and wind power, is expected to outcompete fossil fuels on cost, the report says.

The JLL forecast carries implications for the Houston area’s tech and renewable energy sectors.

As of December, Texas was home to 413 data centers, second only to Virginia at 665, according to Visual Capitalist. Dozens more data centers are in the pipeline, with many of the new facilities slated for the Houston, Austin, Dallas-Fort Worth and San Antonio areas.

Amid Texas’ data center boom, several Houston companies are making inroads in the renewable energy market for data centers. For example, Houston-based low-carbon energy supplier ENGIE North America agreed last May to supply up to 300 megawatts of wind power for a Cipher Mining data center in West Texas.

The JLL report says power, not location or cost, will become the primary factor in selecting sites for data centers due to multi-year waits for grid connections.

“Energy infrastructure has emerged as the critical bottleneck constraining expansion [of data centers],” the report says. “Grid limitations now threaten to curtail growth trajectories, making behind-the-meter generation and integrated battery storage solutions essential pathways for sustainable scaling.”

Behind-the-meter generation refers to onsite energy systems such as microgrids, solar panels and solar battery storage. The report predicts global solar capacity will expand by roughly 100 gigawatts between 2026 and 2030 to more than 10,000 gigawatts.

“Solar will account for nearly half of global renewable energy capacity in 2026, and despite its intermittent properties, solar will remain a key source of sustainable energy for the data center sector for years to come,” the report says.

Thanks to cost and sustainability benefits, solar-plus-storage will become a key element of energy strategies for data centers by 2030, according to the report.

“While some of this energy harvesting will be colocated with data center facilities, much of the energy infrastructure will be installed offsite,” the report says.

Other findings of the report include:

  • AI could represent half of data center workloads by 2030, up from a quarter in 2025.
  • The current five-year “supercycle” of data center infrastructure development may result in global investments of up to $3 trillion by 2030.
  • Nearly 100 gigawatts worth of new data centers will be added between 2026 and 2030, doubling global capacity.

“We’re witnessing the most significant transformation in data center infrastructure since the original cloud migration,” says Matt Landek, who leads JLL’s data center division. “The sheer scale of demand is extraordinary.”

Hyperscalers, which operate massive data centers, are allocating $1 trillion for data center spending between 2024 and 2026, Landek notes, “while supply constraints and four-year grid connection delays are creating a perfect storm that’s fundamentally reshaping how we approach development, energy sourcing, and market strategy.”