Joseph Powell, founding director of UH Energy Transition Institute, discusses the institute's role in the clean energy landscape and their corporate partnerships. Photo via uh.edu

Joseph Powell is about six months into his role as the founding director of the University of Houston’s Shell-backed Energy Transition Institute but already is eyeing how the Institute can aid generations to come through clean energy.

The Energy Transition Institute, which launched a year ago through a $10 million grant from Shell USA Inc. and Shell Global Solutions (US) Inc., is focused on three core areas of clean energy: hydrogen, carbon management, and circular plastics. Powell previously served as chief scientist for Shell as a chemical engineer and has co-invented 60 granted patents.

Powell discussed with EnergyCapital the projects ETI is excited for, opportunities for students to get involved, and their partnership with corporations.

EnergyCapitalHTX: To get started with a little bit of background, the University of Houston Energy Transition Institute was established in March 2020 with a $10 million commitment from Shell. So why did the university decide now is the time for an institute like this to be formed?

Joseph Powell: Houston is the energy capital, and the energy transition has been on everyone's mind, and so certainly now is the right time for an offering to industry to look at how to coordinate activities in that space. We reached out to Shell, which has really made strong commitments in terms of making the pivot from being an oil and gas company to being an energy company and really embracing the energy transition and everything that goes along with that. There was a strong relationship between University of Houston and Shell on the recruitment side, so a number of the Shell staff and employees. UH has been one of the principal suppliers of talent to Shell as an organization, also on the research side in terms of research around hydrogen chemical reaction engineering, and other aspects on the social and community benefits side of what happens with energy. So, there's been quite a bit of overlap. I think Shell saw it as really important to be partnering in the energy capital of the world, to be providing that pipeline of talent for what's going to be needed for the energy transition.

EC: You decided to come to UH to lead the Energy Transition Institute over retiring. What inspired you to take on this role? What’s your vision for the organization?

JP: It was an opportunity I couldn't pass up. I had worked 36 years in the industry, for Exxon and 32 years with Shell. The elements of the Energy Transition Institute were something that I was very passionate about working on with Shell, since I've been promoted to chief scientist of chemical engineering for the growth global group in 2006. I was involved in helping Shell set its strategy to become a full energy company and chemicals, not just oil and gas. I was involved in the elements of that transition, and then I also had a very strong interest in sustainability in terms of how to manage not only the greenhouse gas footprints of the company, but also elements on the chemical side that go with sustainability.

Shell wanted to combine those two into an energy transition Institute, circular plastics and chemicals were a major focus of that, along with hydrogen as a clean vector for future energy. I was involved with Shell and helped to put together some of their moonshots for how hydrogen can be used in the future economy. The Biden administration has now termed moonshots as Earthshots for the US to be able to use hydrogen as that clean vector to deliver renewable and other forms of energy going forward, as well as carbon management, so I was heavily involved Shell’s planning for how to deal with CO2, whether to capture it and put it underground, or capture it and use it. I'm on the National Academy study team right now, looking at what is the potential to be using some of that CO2 into products as opposed to storing it underground. All of those elements were important and in line with things that I care about and have been heavily involved with, throughout my career. So, why retire when one can be engaged with all of those types of things and now help the next generation come up to speed and take that over and drive it into 2050 and beyond what needs to be done?

EC: How is UH engaging with corporate partners? Why is a collaboration of this nature important?

JP: This collaboration is important for several reasons. One is that we are that bridge to the students and workforce of the future. It's very important for this generation to be as excited about careers and energy as I was, coming up during the energy crisis of the last century and we thought we were absolutely out of energy. We had rationing of gasoline and other things going on, back when I was in high school. Now we have many sources of energy, in a certain sense an energy abundance, but we really need to be looking at the environmental footprint, impact on the climate and then what forms of energy we want to be using. Then you add to that the issue with the impact of plastics on the environment, and how to drive to a more circular economy where we're recycling those and having less of that escape into the environment; those are all strong drivers of what needs to be done going forward.

It takes a lot of energy to process chemicals, plastics, and materials in a circular manner. Developing that workforce of the future means we need the students who want to engage in these efforts and making sure that those opportunities are available across the board to people of all different economic backgrounds in terms of participating in what is going to be just a tremendous growth engine for the future in terms of jobs and opportunities. You're looking at trillions of dollars of annual investment that's needed to manage the energy transition, so it's a really exciting opportunity for those who want to be going into those careers. It's not just science and engineering, but also jobs in law, policy, and communications, because there's a tremendous need for knowledge and background in the energy transition in order to be effective in that going forward. We want to have all the good talent that can be attracted to that arena as a way to address the problem. It's a grand challenge.

We want to make sure that in addition to the research opportunities, since UH is a Tier 1 research institute, we focus on working very closely with industry; there's a number of multinational and local chemical and energy companies that have their research centers and home offices in the Houston area. We can develop those close relationships between the researchers and business interests involved with the students at the university, because we're right here and co-located and can really develop some very strong working teams in that space. It's been exciting to be responding to the federal grant opportunities, which have been abundant in the last year and a half and putting together proposals, to be engaging the industry investigators along with the university students to work on some of those problems. It's a good win-win for both.

We also get to be a trusted voice in the overall equation because there's a lot to know and understand about energy and circular chemicals. They’re more nuanced and complex than what may appear in the news headlines in terms of understanding the trade-offs that have to be worked out, in order to optimize for everyone who's involved. The university can bring in that broad set of stakeholders and have a conversation and make sure that all those co-benefits are understood and the issues that come with energy infrastructure are also worked through for people impacted by the infrastructure but also the benefits of clean air, cleaner environment, and reduced risk of climate change.

EC: Are there any particular technologies the institute is focusing on or excited about at the moment?

JP: I'm really big on hydrogen as an energy vector for the future. Currently, we use hydrogen primarily in refining petroleum into gasoline and diesel and also making fertilizer which is very important for mankind. There was a Nobel Prize on that, you know, more than 100 years ago, and the importance of being able to grow food at rates the planet’s population requires.

Hydrogen now is being looked at, beyond those applications as essentially the diesel or gasoline of the future and also the liquefied natural gas of the future. It can be a clean vector, because you can put it into a fuel cell and generate energy cleanly where water is the only product of that reaction. That can be used to drive quite a number of energy related processes that are currently using combustion of fossil fuels that contain carbon. One of the interesting things is that hydrogen can be supplied to trucks and buses, agricultural tractors, and such. Most of the goods that you're buying today are produced in warehouses where the forklifts are running on hydrogen fuel cells rather than batteries because they refuel so quickly. It's cleaner than emissions. So then there's good air quality in the warehouses. There are more than 60,000 hydrogen-fueled forklifts now in the US, because of that value proposition. We see that for this heavy duty transportation, hydrogen is that very clean vector, you can make it by taking renewable energy and splitting water into hydrogen so it can be very clean. It can also be made from the abundant natural gas we have in Texas and storing the CO2 underground and then using the clean hydrogen for that fuel. That's one of the very exciting new value propositions that go with the Institute.

The second one is carbon management. The Energy Transition Institute will sit within UH Energy, which was founded a number of years ago and so it's looking at the transition part of energy, but UH Energy has its Center for Carbon Management in Energy, which has been focusing capturing and storing CO2 underground off of the existing facilities that we have up and running. They're run by Chuck McConnell but what we will do with ETI is extend that more onto the research side for some of the new things coming along in terms of capturing and utilizing CO2. I'm on a national academy study looking at where and how we want to be turning that CO2 into usable products, using energy and hydrogen, to make a number of those projects. That synergizes with hydrogen as part of the Institute.

Capturing and converting CO2 into usable products is certainly one of the exciting opportunities and then also to reuse those products we've already been making. There are also so many nice things you can do with hydrogen in terms of energy storage, and also helping to upgrade some of the carbon dioxide into usable products, but then also bio feedstock, you can take crop residues or trees and other energy type materials and use hydrogen to upgrade those into those types of plastic materials as well. That's another place where hydrogen is combined with managing a carbon resource to make a more sustainable plastic or polymer.

EC: With UH’s strong emphasis on research and entrepreneurship, is the Institute playing to these strengths within its programming and opportunities to further this trend and if so how?

JP: The money that's been funded by Shell into the launch of the Institute, and then that's been leveraged up to the $52 million point through various donors matching funds. With that, we will be hiring additional faculty to work in this space so that we can further expand the research that's being done. Each new faculty member becomes the opportunity for three things: more coursework in the area around energy, which impacts the student education; the hiring of graduate students who will be doing research; and then that also translates into undergraduate opportunities to be working in the labs and learning. We're also going to be building a new innovation hub in the center of campus here. It will be right across from the MD Anderson library where the old College of Technology building had been located.

On the first floor, there will be a makerspace where the students with ideas and people from the community will be able to come in and have access to 3D printers and other types of materials to put their widgets and prototypes together. On the second floor, then will be the Wolff Center for Entrepreneurship, which has the top undergraduate program in terms of entrepreneurship so they will hold mentorships, present there, in classroom-like settings, getting people involved with launching an idea and taking it forth into the commercial marketplace. The Energy Transition Institute will be on the third floor because so much of that innovation will be involved in the space of energy transition, which is really the main growth engine for expanding research at the university. Then we'll have on the top floor some laboratories, not only on chemistry and materials, but also on data science. And so we have a Data Science Institute, set up by HPE here at UH, looking at for example how artificial intelligence, machine learning and all those kinds of things help you innovate in the energy materials and processes.

Having a hub that combines all of that together really is an attraction to get all those players together on campus and will be really a key to making all this happen. It's a really exciting place to get involved and if you're a student, having all that in front of you, in terms of opportunity, we think it'd be a great attraction.

------

This conversation has been edited for brevity and clarity.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

CenterPoint Energy names new COO as resiliency initiatives continue

new hire

CenterPoint Energy has named Jesus Soto Jr. as its new executive vice president and chief operating officer.

An energy industry veteran with deep ties to Texas, Soto will oversee the company's electric operations, gas operations, safety, supply chain, and customer care functions. The company says Soto will also focus on improving reliability and meeting the increased energy needs in the states CenterPoint serves.

"We are pleased to be able to welcome a leader of Jesus Soto's caliber to CenterPoint's executive team,” Jason Wells, CEO and president of CenterPoint, said in a news release. “We have one of the most dynamic growth stories in the industry, and over the next five years we will deliver over $31 billion of investments across our footprint as part of our capital plan. Jesus's deep understanding and background are the perfect match to help us deliver this incredible scope of work at-pace that will foster the economic development and growth demands in our key markets. He will also be instrumental in helping us continue to focus on improving safety and delivering better reliability for all the communities we are fortunate to serve.”

Soto comes to CenterPoint with over 30 years of experience in leading large teams and executing large scale capital projects. As a longtime Houstonian, he served in roles as executive vice president of Quanta Services and COO for Mears Group Inc. He also served in senior leadership roles at other utility and energy companies, including PG&E Corporation in Northern California and El Paso Corp. in Houston.

Soto has a bachelor's degree in civil engineering from the University of Texas at El Paso, and a master's degree in civil engineering from Texas A&M University. He has a second master's degree in business administration from the University of Phoenix.

“I'm excited to join CenterPoint's high-performing team,” Soto said in the news release. “It's a true privilege to be able to serve our 7 million customers in Texas, Indiana, Ohio and Minnesota. We have an incredible amount of capital work ahead of us to help meet the growing energy needs of our customers and communities, especially across Texas.”

Soto will join the company on Aug. 11 and report to Wells as CenterPoint continues on its Greater Houston Resiliency Initiative and Systemwide Resiliency Plan.

“To help realize our resiliency and growth goals, I look forward to helping our teams deliver this work safely while helping our customers experience better outcomes,” Soto added in the news release. “They expect, and deserve, no less.”

Oil markets on edge: Geopolitics, supply risks, and what comes next

guest column

Oil prices are once again riding the waves of geopolitics. Uncertainty remains a key factor shaping global energy trends.

As of June 25, 2025, U.S. gas prices were averaging around $3.22 per gallon, well below last summer’s levels and certainly not near any recent high. Meanwhile, Brent crude is trading near $68 per barrel, though analysts warn that renewed escalation especially involving Iran and the Strait of Hormuz could push prices above $90 or even $100. Trump’s recent comments that China may continue purchasing Iranian oil add yet another layer of geopolitical complexity.

So how should we think about the state of the oil market and what lies ahead over the next year?

That question was explored on the latest episode of The Energy Forum with experts Skip York and Abhi Rajendran, who both bring deep experience in analyzing global oil dynamics.

“About 20% of the world’s oil and LNG flows through the Strait of Hormuz,” said Skip. “When conflict looms, even the perception of disruption can move the market $5 a barrel or more.”

This is exactly what we saw recently: a market reacting not just to actual supply and demand, but to perceived risk. And that risk is compounding existing challenges, where global demand remains steady, but supply has been slow to respond.

Abhi noted that U.S. shale production has been flat so far this year, and that given the market’s volatility, it’s becoming harder to stay short on oil. In his view, a higher price floor may be taking hold, with longer-lasting upward pressure likely if current dynamics continue.

Meanwhile, OPEC+ is signaling supply increases, but actual delivery has underwhelmed. Add in record-breaking summer heat in the Middle East, pulling up seasonal demand, and it’s easy to see why both experts foresee a return to the $70–$80 range, even without a major shock.

Longer-term, structural changes in China’s energy mix are starting to reshape demand patterns globally. Diesel and gasoline may have peaked, while petrochemical feedstock growth continues.

Skip noted that China has chosen to expand mobility through “electrons, not molecules,” a reference to electric vehicles over conventional fuels. He pointed out that EVs now account for over 50% of monthly vehicle sales, a signal of a longer-term shift in China’s energy demand.

But geopolitical context matters as much as market math. In his recent policy brief, Jim Krane points out that Trump’s potential return to a “maximum pressure” campaign on Iran is no longer guaranteed strong support from Gulf allies.

Jim points out that Saudi and Emirati leaders are taking a more cautious approach this time, worried that another clash with Iran could deter investors and disrupt progress on Vision 2030. Past attacks and regional instability continue to shape their more restrained approach.

And Iran, for its part, has evolved. The “dark fleet” of sanctions-evasion tankers has expanded, and exports are booming up to 2 million barrels per day, mostly to China. Disruption won’t be as simple as targeting a single export terminal anymore, with infrastructure like the Jask terminal outside the Strait of Hormuz.

Where do we go from here?

Skip suggests we may see prices drift upward through 2026 as OPEC+ runs out of spare capacity and U.S. shale declines. Abhi is even more bullish, seeing potential for a quicker climb if demand strengthens and supply falters.

We’re entering a phase where geopolitical missteps, whether in Tehran, Beijing, or Washington, can have outsized impacts. Market fundamentals matter, but political risk is the wildcard that could rewrite the price deck overnight.

As these dynamics continue to evolve, one thing is clear: energy policy, diplomacy, and investment strategy must be strategically coordinated to manage risk and maintain market stability. The stakes for global markets are simply too high for misalignment.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

New forecast shows impact of 'Big Beautiful Bill' on Texas clean energy generation

energy forecast

Texas is expected to see a 77-gigawatt decrease in power generation capacity within the next 10 years under the federal "One Big Beautiful Bill Act," which President Trump recently signed into law, a new forecast shows.

Primarily due to the act’s repeal of some clean energy tax credits, a forecast, published by energy policy research organization Energy Innovation Policy & Technology, predicts that Texas is expected to experience a:

  • 54-gigawatt decline in capacity from solar power by 2035
  • 23-gigawatt decline in capacity from wind power by 2035
  • 3.1-gigawatt decline in capacity from battery-stored power by 2035
  • 2.5-gigawatt increase in capacity from natural gas by 2035

The legislation “will reduce additions of new, cost-effective electricity capacity in Texas, raising power prices for consumers and decreasing the state’s GDP and job growth in the coming years,” the forecast says.

The forecast also reports that the loss of sources of low-cost renewable energy and the resulting hike in natural gas prices could bump up electric bills in Texas. The forecast envisions a 23 percent to 54 percent hike in electric rates for residential, commercial and industrial customers in Texas.

Household energy bills are expected to increase by $220 per year by 2030 and by $480 per year by 2035, according to the forecast.

Energy Innovation Policy & Technology expects job growth and economic growth to also take a hit under the "Big Beautiful Bill."

The nonprofit organization foresees annual losses of $5.9 billion in Texas economic output (as measured by GDP) by 2030 and $10 billion by 2035. In tandem with the impact on GDP, Texas is projected to lose 42,000 jobs by 2030 and 94,000 jobs by 2035 due to the law’s provisions, according to the organization.

The White House believes the "Big Beautiful Bill" will promote, not harm, U.S. energy production. The law encourages the growth of traditional sources of power such as oil, natural gas, coal and hydropower.

“The One Big Beautiful Bill Act is a historic piece of legislation that will restore energy independence and make life more affordable for American families by reversing disastrous Biden-era policies that constricted domestic energy production,” Interior Secretary Doug Burgum said in a news release.

Promoters of renewable energy offer an opposing viewpoint.

“The bill makes steep cuts to solar energy and places new restrictions on energy tax credits that will slow the deployment of residential and utility-scale solar while undermining the growth of U.S. manufacturing,” says the Solar Energy Industries Association.

Jason Grumet, CEO of the American Clean Power Association, complained that the legislation limits energy production, boosts prices for U.S. businesses and families, and jeopardizes the reliability of the country’s power grid.

“Our economic and national security requires that we support all forms of American energy,” Grumet said in a statement. “It is time for the brawlers to get out of the way and let the builders get back to work.”