Jane Stricker, executive director of HETI, on two years of the organization and the dual challenge the industry faces. Photo via GHP

As the Houston region continues to have important conversations about energy and climate in the energy capital of the world, it’s helpful to frame the discussion in terms of the dual challenge.

On one hand, our world needs energy companies across all sectors to continue to develop and deliver energy for all parts of the world – energy that is affordable and reliable and can enable the level of population and GDP growth anticipated over the next 30 years. At the same time, we need to find a way to significantly reduce the greenhouse gas emissions associated with the production and distribution of that energy to reduce the risks and impacts associated with climate change on our world.

As the global energy landscape continues to evolve – across the entire value chain, just in the two years since HETI was launched, there is an even greater urgency to leverage all available solutions to address the dual challenge.

We must be able to recognize that there is no silver bullet, no single technology and no single source of energy today that can get the world to net zero by 2050. However, that doesn’t mean we should give up. As the energy transition capital of the world, Houston continues to demonstrate that can lead in developing and deploying “all of the above” energy solutions needed to reach our ambitious goals.

With over 200 new cleantech and climatetech startups alongside some of the largest energy leaders who know how to scale technology, Houston is uniquely positioned to lead the way in technology development and commercial deployment to meet the dual challenge. Whether it’s implementing a carbon capture and storage project along Houston’s ship channel, piloting small modular nuclear reactor technology to enable zero carbon energy for chemical production in Seadrift, or converting an abandoned landfill in the middle of Houston’s Sunnyside community into the largest urban solar farm in the U.S. to create both zero carbon power and economic opportunity for the community, Houston is charging forward on all fronts to meet the dual challenge.

We cannot afford to sacrifice progress in search of a perfect solution, and Houston embraces this perspective in the way our region is coming together across the entire energy ecosystem to build on our leadership and lead the world to an energy-abundant, low-carbon future.

------

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Just what does 'energy transition' mean, anyway? Photo via Shutterstock

Defining ‘energy transition’ — and the semantics involved in it

Guest column

The term “energy transition” is fraught with misconceptions, but not just because of the varied interpretation of the term “transition.” The Energy101 series on EnergyCapitalHTX.com brings clarity to both terms with simple and direct information that anyone can understand. As explored in a previous conversation with ChatGPT, we are all part of the Energy Industry, so its high time we all understood it.

DEFINING TERMINOLOGY

Merriam-Webster defines transition as “a change or shift from one state, subject, place, etc. to another.” The popular interpretation of ‘energy transition’ implies a complete shift away from energy produced from fossil fuels to energy produced from renewable sources. This isn’t entirely accurate–let’s explore why.

“The challenge of our lifetime is addressing [the] dual challenge of meeting increased global energy demand while confronting global climate change” says Jane Stricker, executive director of the Houston Energy Transition Initiative and senior vice president, Greater Houston Partnership. This globally inclusive definition of ‘energy transition’ focuses on addressing objectives instead of proffering solutions–a common project management viewpoint through which opportunities are explored.

It's a simple, but effective, way to expand one’s line of thinking from acute problem solving to broader root-cause analysis. In other words, it is how we elevate from playing checkers to mastering chess.

DEFINING THE OPPORTUNITY

The United Nations tells us the world’s population reached 8 billion in late 2022, an increase of more than one billion people in just over a decade. During the same time frame, the number of people around the world without consistent access to electricity declined from approximately 1.2 billion to 775 million per the International Energy Agency (IEA) 2022 World Energy Outlook report. A commendable feat, no doubt, but the fact remains that about 10% of the world’s population still lives in energy poverty–and that number is increasing.

The first half of Stricker’s sentiment, the challenge of “meeting increased global energy demand” reflects these statistics, albeit almost poetically. To state the issue more plainly, one could ask, “how do we get more energy to more people?” Taking it one step further, we can split that inquiry into two basic questions: (1) how to get more energy, and (2) how to reach more people. This is where it gets interesting.

As explored in the inaugural Energy 101 article, energy is converted into usable form through one of three reactions. Mechanical and nuclear reactions that create electricity for immediate consumption are often deemed “cleaner” than those produced by chemical reaction, but the challenges of delivering more energy consistently and reaching more people are left shortchanged due to intermittent production and limited distribution mechanisms.

In recent history, this has left us to rely upon energy produced by chemical reactions from fossil fuels and/or batteries. Batteries have inherently been the more expensive option, mostly because of the limited supply of minerals necessary to effectively store and transport energy for later use in these contained systems. Hence, the heavy reliance on cheap fossil fuels.

REFINED CONSTRAINTS DEMAND NEW SOLUTIONS

With price as the determining factor influencing the modern world’s energy supply, oil and natural gas have scrambled to compete with coal, which is affordable and easily transportable. However, coal has one major drawback–using it accounts for approximately 20% of carbon emissions, more than oil and gas industrial use, combined, per calculations from the U.S. Energy Information Agency.

We have a duty to get more energy to more people, “while confronting global climate change,” as Stricker states. In the context of energy poverty, where more consistent access to more electricity needs to reach more people, energy needs not only be abundant, reliable, affordable, and accessible, but also, less toxic.

So far, we have yet to find a solution that meets all these conditions, so we have made trade-offs. The ‘energy transition’ merely reflects the energy industry’s latest acceptance of the next hurdle to enhance our lives on earth. As depicted by the image from the IEA below, it most certainly reflects a reduction in the reliance on coal for electricity production, but how that energy reduction will be off set remains yet to be determined.

It's an opportunity ripe for exploration while existing sources push to meet the expanding definition of sustainable energy–a shift in evaluation criteria, some might say. Perhaps even a transition.

Stacked chart showing demand of natural gas, coal, and oil from 1900 to 2050 (estimated)Demand for natural gas and oil are expected to level out, as demand for coal shrinks to meet goals for lower carbon emissions. Photo courtesy of IEA, license CC by 4.0Demand for natural gas and oil are expected to level out, as demand for coal shrinks to meet goals for lower carbon emissions. Photo courtesy of IEA, license CC by 4.0


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

1PointFive secures new buyer for Texas CO2 removal project​

seeing green

Houston’s Occidental Petroleum Corp., or Oxy, and its subsidiary 1PointFive have secured another carbon removal credit deal for its $1.3 billion direct air capture (DAC) project, Stratos.

California-based Palo Alto Networks has agreed to purchase 10,000 tons of carbon dioxide removal (CDR) credits over five years from the project, according to a news release.

The company joins others like Microsoft, Amazon, AT&T, Airbus, the Houston Astros and the Houston Texans that have agreed to buy CDR credits from 1Point5.

"Collaborating with 1PointFive in this carbon removal credit agreement highlights our proactive approach toward exploring innovative solutions for a greener future,” BJ Jenkins, president of Palo Alto Networks, said in the release.

The Texas-based Stratos project is slated to come online this year near Odessa. It's being developed through a joint venture with investment manager BlackRock and is designed to capture up to 500,000 metric tons of CO2 per year. The U.S Environmental Protection Agency recently approved Class VI permits for the project.

DAC technology pulls CO2 from the air at any location, not just where carbon dioxide is emitted. Under the agreement with Palo Alto Networks and others, the carbon dioxide that underlies the credits will be stored in a below-the-surface saline aquifer and won’t be used to produce oil or gas.

“We look forward to collaborating with Palo Alto Networks and using Direct Air Capture to help advance their sustainability strategy,” Michael Avery, president and general manager of 1PointFive, said in the release. “This agreement continues to build momentum for high-integrity carbon removal while furthering DAC technology to support energy development in the United States.”

Houston researchers develop strong biomaterial that could replace plastic

plastic problem

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic.

The research was led by Muhammad Maksud Rahman, an assistant professor of mechanical and aerospace engineering at the University of Houston and an adjunct assistant professor of materials science and nanoengineering at Rice University. The team shared its findings in a study in the journal Nature Communications earlier this month. M.A.S.R. Saadi, a doctoral student in material science and nanoengineering at Rice, served as the first author.

The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties,” according to the researchers.

Biomaterials typically have weaker mechanical properties than their synthetic counterparts. However, the team was able to develop sheets of material with similar strengths to some metals and glasses. And still, the material was foldable and fully biodegradable.

To achieve this, the team developed a rotational bioreactor and utilized fluid motion to guide the bacteria fibers into a consistent alignment, rather than allowing them to align randomly, as they would in nature.

The process also allowed the team to easily integrate nanoscale additives—like graphene, carbon nanotubes and boron nitride—making the sheets stronger and improving the thermal properties.

“This dynamic biosynthesis approach enables the creation of stronger materials with greater functionality,” Saadi said in a release. “The method allows for the easy integration of various nanoscale additives directly into the bacterial cellulose, making it possible to customize material properties for specific applications.”

Ultimately, the scientists at UH and Rice hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth.

Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

“We envision these strong, multifunctional and eco-friendly bacterial cellulose sheets becoming ubiquitous, replacing plastics in various industries and helping mitigate environmental damage,” Rahman said the release.

America's only rare earth producer announces $500M agreement with Apple

Digging In

MP Materials, which runs the only American rare earths mine, announced a new $500 million agreement with tech giant Apple on Tuesday to produce more of the powerful magnets used in iPhones as well as other high-tech products like electric vehicles.

This news comes on the heels of last week’s announcement that the U.S. Defense Department agreed to invest $400 million in shares of the Las Vegas-based company. That will make the government the largest shareholder in MP Materials and help increase magnet production.

Despite their name, the 17 rare earth elements aren’t actually rare, but it’s hard to find them in a high enough concentration to make a mine worth the investment.

They are important ingredients in everything from smartphones and submarines to EVs and fighter jets, and it's those military applications that have made rare earths a key concern in ongoing U.S. trade talks. That's because China dominates the market and imposed new limits on exports after President Donald Trump announced his widespread tariffs. When shipments dried up, the two sides sat down in London.

The agreement with Apple will allow MP Materials to further expand its new factory in Texas to use recycled materials to produce the magnets that make iPhones vibrate. The company expects to start producing magnets for GM's electric vehicles later this year and this agreement will let it start producing magnets for Apple in 2027.

The Apple agreement represents a sliver of the company's pledge to invest $500 billion domestically during the Trump administration. And although the deal will provide a significant boost for MP Materials, the agreement with the Defense Department may be even more meaningful.

Neha Mukherjee, a rare earths analyst with Benchmark Mineral Intelligence, said in a research note that the Pentagon's 10-year promise to guarantee a minimum price for the key elements of neodymium and praseodymium will guarantee stable revenue for MP Minerals and protect it from potential price cuts by Chinese producers that are subsidized by their government.

“This is the kind of long-term commitment needed to reshape global rare earth supply chains," Mukherjee said.

Trump has made it a priority to try to reduce American reliance on China for rare earths. His administration is both helping MP Materials and trying to encourage the development of new mines that would take years to come to fruition. China has agreed to issue some permits for rare earth exports but not for military uses, and much uncertainty remains about their supply. The fear is that the trade war between the world’s two biggest economies could lead to a critical shortage of rare earth elements that could disrupt production of a variety of products. MP Materials can't satisfy all of the U.S. demand from its Mountain Pass mine in California’s Mojave Desert.

The deals by MP Materials come as Beijing and Washington have agreed to walk back on their non-tariff measures: China is to grant export permits for rare earth magnets to the U.S., and the U.S. is easing export controls on chip design software and jet engines. The truce is intended to ease tensions and prevent any catastrophic fall-off in bilateral relations, but is unlikely to address fundamental differences as both governments take steps to reduce dependency on each other.