A Rice University study will consider how "design strategies aimed at improving civic engagement in stormwater infrastructure could help reduce catastrophic flooding." Photo via Getty Images

Houston will be the setting of a new three-year National Science Foundation-funded study that focuses on a phenomenon the city is quite familiar with: flooding.

Conducted by Rice University, the study will consider how "design strategies aimed at improving civic engagement in stormwater infrastructure could help reduce catastrophic flooding," according to a statement.

The team will begin its research in the Trinity/Houston Gardens neighborhood and will implement field research, participatory design work and hydrological impact analyses.

Rice professor of anthropology Dominic Boyer and Rice's Gus Sessions Wortham Professor of Architecture Albert Pope are co-principal investigators on the study. They'll be joined by Phil Bedient, director of the Severe Storm Prediction, Education and Evacuation from Disasters Center at Rice, and Jessica Eisma, a civil engineer at the University of Texas at Arlington.

According to Boyer, the study will bring tougher researchers from across disciplines as well as community members and even elementary-aged students.

"Our particular focus will be on green stormwater infrastructure—techniques like bioswale, green roofs and rain gardens—that are more affordable than conventional concrete infrastructure and ones where community members can be more directly involved in the design and implementation phases,” Boyer said. “We envision helping students and other community members design and complete projects like community rain gardens that offer a variety of beneficial amenities and can also mitigate flooding.”

Rice's Severe Storm Prediction, Education and Evacuation from Disasters Center, or SSPEED Center, is a leader in flood mitigation research and innovation.

In 2021, the center developed its FIRST radar-based flood assessment, mapping, and early-warning system based on more than 350 maps that simulate different combinations of rainfall over various areas of the watershed. The system was derived from the Rice/Texas Medical Center Flood Alert System (FAS), which Bedient created 20 years ago. Click here to read more.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston launches Google-backed tool to address urban tree cover disparities

seeing green

The oldest national nonprofit conservation organization in the U.S American Forests has launched the Houston Tree Equity Score Analyzer, which was developed through local nonprofit Trees For Houston and local stakeholders from local government, environmental groups and the public health sector, and supported by Google’s philanthropic arm Google.org with a $450,000 grant.

To mark the launch, Trees For Houston and American Forest celebrated the partnership and worked to plant 50 trees at Shadydale Elementary in Northeast Houston on December 6.

“This marks a significant milestone for Houston's urban forestry efforts,” says Texas State Representative Senfronia Thompson at the December 6 event. “This effort goes beyond simply planting trees—it’s about creating the foundation for a greener, more inclusive future for our community. By uniting diverse resources and partners, including American Forests, Google.org and Trees For Houston, we’re showcasing a powerful dedication to enhancing the environmental well-being and quality of life in our urban areas.”

How the analyzer works is it provides auto-generated data on the impact of tree cover alongside demographic data, land use, poverty and other socioeconomic factors to assist with guide planning and investments to grow tree cover. The Houston Tree Equity Analyzer found that Shadydale Elementary has just 9 percent tree canopy coverage, which falls short of the 30 percent canopy goal for the area. The planting will increase the canopy by 6 percent according to a news release. According to American Forests, nearly 80 percent of urban neighborhoods in the United States have inadequate tree cover.

“The Tree Equity Score Analyzer enables communities to take a human-centered, data-driven approach to developing actionable tree planting and protection plans, ensuring they are focusing on areas that need them most, like Shadydale Elementary School,” said Vice President of GIS and Data Science at American Forests Chris David said in a news release.

American Forests is aiming to assist with at least 100 cities to make progress on Tree Equity by 2030. American Forests helped to unlock $1.5 billion, which was the nation’s largest federal investment in urban forestry in the Inflation Reduction Act of 2022.

“We look forward to working with our partners in Houston to continue to grow equitable tree cover in the community with data-driven approaches and action,” David says in a news release.

Photo by Thomas Koenig/Big Pineapple Productions

This Houston innovator's innovative corrosion detection tech is vital to the future of energy

now streaming

Houston-based Corrolytics approach is to help revolutionize and digitize microbial corrosion detection — both to improves efficiency and operational cost for industrial companies, but also to move the needle on a cleaner future for the energy industry.

"We are having an energy transition — that is a given. As we are bringing new energy, there will be growth of infrastructure to them. Every single path for the energy transition, corrosion will play a primary role as well," Anwar Sadek, co-founder and CEO of Corrolytics, says on the Houston Innovators Podcast.

The technology Sadek and his team have created is a tool to detect microbial corrosion — a major problem for industrial businesses, especially within the energy sector. Sadek describes the product as being similar to a testing hit a patient would use at home or in a clinic setting to decipher their current ailments.



Users of the Corrolytics test kit can input their pipeline sample in the field and receive results via Corrolytics software platform.

"This technology, most importantly, is noninvasive. It does not have to be installed into any pipelines or assets that the company currently has," Sadek explains. "To actually use it, you don't have to introduce new techniques or new processes in the current operations. It's a stand-alone, portable device."

Corrolytics hopes to work with new energies from the beginning to used the data they've collected to prevent corrosion in new facilities. However, the company's technology is already making an impact.

"Every year, there is about 1.2 gigaton of carbon footprint a year that is released into the environment that is associated with replacing corroded steel in general industries," Sadek says. "With Corrolytics, (industrial companies) have the ability to extend the life of their current infrastructure."

Despite having success in taking his technology from lab to commercialization, Sadek made the strategic decision to move his company, Corrolytics, from where it was founded in Ohio to Houston.

"Houston is the energy capital of the world. For the technology we are developing, it is the most strategic move for us to be in this ecosystem and in this city where all the energy companies are, where all the investors in the energy space are — and things are moving really fast in Houston in terms of energy transition and developing the current infrastructure," Sadek says.

And as big as a move as it was, it was worth it, Sadek says.

"It's been only a year that we've been here, but we've made the most developments, the most outreach to clients in this one last year."

Sadek says his move to Houston has already paid off, and he cites one of the company's big wins was at the 2024 Houston Innovation Awards, where Corrolytics won two awards.

———

This article originally ran on InnovationMap.