Dianna Liu of ARIX Technologies joins the Houston Innovators Podcast to share her entrepreneurial journey — and why Houston was the right place to start her company. Photo courtesy of ARIX

After working for years in the downstream energy industry where safety and efficiency were top priorities, Dianna Liu thought there was a way technology could make a huge difference.

Despite loving her company and her job, she took a leap of faith to start a robotics company to create technology to more safely and efficiently monitor corrosion in pipelines. ARIX Technologies has developed software and hardware solutions for its customers with pipelines in downstream and beyond.

"Overall, this industry is an industry that really harps on doing things safely, doing things well, and having all the data to make really informed decisions," Liu says on the Houston Innovators Podcast. "Because these are huge companies with huge problems, it takes a lot of time to set up the right systems, adopt new things, and make changes."

But it's an industry Liu knows well, so she founded ARIX in 2017 and created a team of engineers to create the first iteration of the ARIX robot, which was at first made of wood, she says. Now, years later, the much-evolved robot moves up and down the exterior of the pipe, using its technology to scan the interior to evaluate corrosion. The technology works with ARIX's software to provide key data analysis.

With customers across the country and the world, ARIX has a strong foothold in downstream, but has garnered interest from other verticals as well — even working with NASA at one point, Liu says.

"Staying in downstream would be nice and safe for us, but we've been very lucky and have had customers in midstream, upstream, and even outside oil and gas and chemicals," she says. "We've gotten inquiries ranging from cosmetics plants to water or wastewater — essentially anything that's round or a pipe that can corrode, we can help with."

Liu, who goes into detail on the show about how critical establishing a positive company culture has been for ARIX, shares a bit about what it's been like growing her company in Houston.

"Houston being the Energy Capital of the World opens a lot of doors to both customers, investors, and employees in a way that's unparalleled. It is a great place to build a company because of that — you have all this expertise in this city and the surrounding areas that's hard to find elsewhere," she says. "Being such a hub — not only for energy, but in terms transportation — means it's easy for us to get to our customers from around the world."

———

This article originally ran on InnovationMap.

Clockwise from top left: Sean Kelly of Amperon, Dianna Liu of ARIXTechnologies, Matthew Dawson of Elementium Materials, Vibhu Sharma of InnoVent Renewables, Cindy Taff of Sage Geosystems, and Emma Konet of TierraClimate. Photos courtesy

Houston's top energy transition founders explain their biggest challenges

overheard

From finding funding to navigating the pace of traditional oil and gas company tech adoption, energy transition companies face their fair share of challenges.

This year's Houston Innovation Awards finalists in the Energy Transition category explained what their biggest challenge has been and how they've overcome it. See what they said below, and make sure to secure your tickets to the Nov. 14 event to see which of these finalists win the award.

"The evolving nature of the energy industry presents opportunities to solve some of our industry's greatest challenges. At Amperon we help optimize grid reliability and stability with the power of AI demand forecasting." 

Sean Kelly, CEO of Amperon, an AI platform powering the smart grid of the future

"The biggest challenge in leading an energy transition-focused startup has been balancing the urgency for sustainable solutions with the slow pace of change in traditional industries like oil and gas. Many companies are cautious about adopting new technologies, especially when it comes to integrating sustainability initiatives. We overcame this by positioning our solutions not just as environmentally friendly, but as tools that improve safety, efficiency, and cost savings. By aligning our value proposition with their operational goals and demonstrating real, measurable benefits, we were able to gain traction and drive adoption in industries that are traditionally resistant to change." 

— Dianna Liu, CEO of ARIXTechnologies, an integrated robotics and data analytics company that delivers inspection services through its robotics platforms

"Scaling up production of hard tech is a major challenge. Thankfully, we recruited top-notch talent with experience in technology scale-up and chemical processes. In addition, we've begun building partnerships with some of the world's largest chemical manufacturers in our space who are excited to be a part of our journey and could rapidly accelerate our go to market strategy. We have significant demand for our product as early as 2025, so partnering with these companies to scale-up will bring our technology to market years ahead of doing it alone."

— Matthew Dawson, CEO of Elementium Materials, a battery technology with liquid electrolyte solutions

"Our pyrolysis reactor is a proprietary design that was developed during Covid. We ran simulations to prove that it works, but it was not easy to test it in a pilot facility, let alone scaling it up. We managed ... to run our pilot plant studies, while working with them remotely. We proved that our reactor worked and produced high quality products. Later, we built our own pilot plant R&D facility to continue running tests and optimizing the process. Then, there was the challenge of scaling it up to commercial size. ... We put together a task force of four different companies to come together to design and build this complex reactor in record time."

— Vibhu Sharma, CEO of InnoVent Renewables, a startup with proprietary continuous pyrolysis technology that converts waste tires, plastics, and biomass into valuable fuels and chemicals

"Energy storage and geothermal power generation are capital-intensive infrastructure projects, requiring investors with a deep commitment and the patience in terms of years to allow the technology to be developed and proven in the field. One challenge is finding that niche of investors with the vision to join our journey. We have succeeded in raising our $30 million series A with these types of investors, whom we’re confident will continue the journey as we scale." 

— Cindy Taff, CEO of Sage Geosystems, an energy company focused on developing and deploying advanced geothermal technologies to provide reliable power and sustainable energy storage solutions regardless of geography

"The biggest challenge we've faced has been to bring together massive independent power producers on one side who are investing hundreds of millions of dollars into grid infrastructure with multi- national tech giants on the other that don't have experience working much with energy storage. As a startup with only four employees, gaining credibility with these players was critical. We overcame this hurdle by becoming the preeminent thought leader on storage emissions, through publishing white papers, discussing the issues on podcasts, and (more)."

— Emma Konet, CTO of TierraClimate, a software provider that helps grid-scale batteries reduce carbon emissions

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Google's $40B investment in Texas data centers includes energy infrastructure

The future of data

Google is investing a huge chunk of money in Texas: According to a release, the company will invest $40 billion on cloud and artificial intelligence (AI) infrastructure, with the development of new data centers in Armstrong and Haskell counties.

The company announced its intentions at a meeting on November 14 attended by federal, state, and local leaders including Gov. Greg Abbott who called it "a Texas-sized investment."

Google will open two new data center campuses in Haskell County and a data center campus in Armstrong County.

Additionally, the first building at the company’s Red Oak campus in Ellis County is now operational. Google is continuing to invest in its existing Midlothian campus and Dallas cloud region, which are part of the company’s global network of 42 cloud regions that deliver high-performance, low-latency services that businesses and organizations use to build and scale their own AI-powered solutions.

Energy demands

Google is committed to responsibly growing its infrastructure by bringing new energy resources onto the grid, paying for costs associated with its operations, and supporting community energy efficiency initiatives.

One of the new Haskell data centers will be co-located with — or built directly alongside — a new solar and battery energy storage plant, creating the first industrial park to be developed through Google’s partnership with Intersect and TPG Rise Climate announced last year.

Google has contracted to add more than 6,200 megawatts (MW) of net new energy generation and capacity to the Texas electricity grid through power purchase agreements (PPAs) with energy developers such as AES Corporation, Enel North America, Intersect, Clearway, ENGIE, SB Energy, Ørsted, and X-Elio.

Water demands

Google’s three new facilities in Armstrong and Haskell counties will use air-cooling technology, limiting water use to site operations like kitchens. The company is also contributing $2.6 million to help Texas Water Trade create and enhance up to 1,000 acres of wetlands along the Trinity-San Jacinto Estuary. Google is also sponsoring a regenerative agriculture program with Indigo Ag in the Dallas-Fort Worth area and an irrigation efficiency project with N-Drip in the Texas High Plains.

In addition to the data centers, Google is committing $7 million in grants to support AI-related initiatives in healthcare, energy, and education across the state. This includes helping CareMessage enhance rural healthcare access; enabling the University of Texas at Austin and Texas Tech University to address energy challenges that will arise with AI, and expanding AI training for Texas educators and students through support to Houston City College.

---

This article originally appeared on CultureMap.com.

Texas A&M's micro-nuclear reactor tops energy transition news to know

Trending News

Editor's note: The top energy transition news of November includes major energy initiatives from Texas universities and the creation of a new Carbon Measures coalition. Here are the most-read EnergyCapitalHTX stories from Nov. 1-15:

1. Micro-nuclear reactor to launch next year at Texas A&M innovation campus

Last Energy will build a 5-megawatt reactor at the Texas A&M-RELLIS campus. Photo courtesy Last Energy.

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan. Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid. Continue reading.

2. Baker Hughes to provide equipment for massive low-carbon ammonia plant

Baker Hughes will supply equipment for Blue Point Number One, a $4 billion low-carbon ammonia plant being developed in Louisiana. Photo courtesy Technip Energies.

Houston-based energy technology company Baker Hughes has been tapped to supply equipment for what will be the world’s largest low-carbon ammonia plant. French technology and engineering company Technip Energies will buy a steam turbine generator and compression equipment from Baker Hughes for Blue Point Number One, a $4 billion low-carbon ammonia plant being developed in Louisiana by a joint venture comprising CF Industries, JERA and Mitsui & Co. Technip was awarded a contract worth at least $1.1 billion to provide services for the Blue Point project. Continue reading.

3. Major Houston energy companies join new Carbon Measures coalition

The new Carbon Measures coalition will create a framework that eliminates double-counting of carbon pollution and attributes emissions to their sources. Photo via Getty Images.

Six companies with a large presence in the Houston area have joined a new coalition of companies pursuing a better way to track the carbon emissions of products they manufacture, purchase and finance. Houston-area members of the Carbon Measures coalition are Spring-based ExxonMobil; Air Liquide, whose U.S. headquarters is in Housto; Mitsubishi Heavy Industries, whose U.S. headquarters is in Houston; Honeywell, whose Performance Materials and Technologies business is based in Houston; BASF, whose global oilfield solutions business is based in Houston; and Linde, whose Linde Engineering Americas business is based in Houston. Continue reading.

4. Wind and solar supplied over a third of ERCOT power, report shows

A new report from the U.S. Energy Information Administration shows that wind and solar supplied more than 30 percent of ERCOT’s electricity in the first nine months of 2025. Photo via Unsplash.

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA). The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024. Continue reading.

5. Rice University partners with Australian co. to boost mineral processing, battery innovation

Locksley Resources will provide antimony-rich feedstocks from a project in the Mojave Desert as part of a new partnership with Rice University that aims to develop scalable methods for extracting and utilizing antimony. Photo via locksleyresources.com.au.

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage. Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Continue reading.

Energy sector AI spending is set to soar to $13B, report says

eyes on ai

Get ready for a massive increase in the amount of AI spending by oil and gas companies in the Houston area and around the country.

A new report from professional services firm Deloitte predicts AI will represent 57 percent of IT spending by U.S. oil and gas companies in 2029. That’s up from the estimated share of 23 percent in 2025.

According to the analysis, the amount of AI spending in the oil and gas industry will jump from an estimated $4 billion in 2025 to an estimated $13.4 billion in 2029—an increase of 235 percent.

Almost half of AI spending by U.S. oil and gas companies targets process optimization, according to Deloitte’s analysis of data from market research companies IDC and Gartner. “AI-driven analytics adjust drilling parameters and production rates in real time, improving yield and decision-making,” says the Deloitte report.

Other uses for AI in the oil and gas industry cited by Deloitte include:

  • Integrating infrastructure used by shale producers
  • Monitoring pipelines, drilling platforms, refineries, and other assets
  • Upskilling workers through AI-powered platforms
  • Connecting workers on offshore rigs via high-speed, real-time internet access supplied by satellites
  • Detecting and reporting leaks

The report says a new generation of technology, including AI and real-time analytics, is transforming office and on-site operations at oil and gas companies. The Trump administration’s “focus on AI innovation through supportive policies and investments could further accelerate large-scale adoption and digital transformation,” the report adds.

Chevron and ExxonMobil, the two biggest oil and gas companies based in the Houston area, continue to dive deeper into AI.

Chevron is taking advantage of AI to squeeze more insights from enormous datasets, VentureBeat reported.

“AI is a perfect match for the established, large-scale enterprise with huge datasets—that is exactly the tool we need,” Bill Braun, the company’s now-retired chief information officer, said at a VentureBeat event in May.

Meanwhile, AI enables ExxonMobil to conduct autonomous drilling in the waters off the coast of Guyana. ExxonMobil says its proprietary system improves drilling safety, boosts efficiency, and eliminates repetitive tasks performed by rig workers.

ExxonMobil is also relying on AI to help cut $15 billion in operating costs by 2027.

“There is a concerted effort to make sure that we’re really working hard to apply that new technology … to drive effectiveness and efficiency,” Darren Woods, executive chairman and CEO of ExxonMobil, said during a 2024 earnings call.