ACCEL has opened applications for next year. Photo via Getty Images

Calling all cleantech startups founded by innovators of color — an inclusive accelerator program is now accepting applications.

Advancing Climatetech and Clean Energy Leaders Program, or ACCEL, has opened applications for it's second cohort. The program — from Greentown Labs and Browning the Green Space — provides access to funding, networking connections, incubation space, mentorship, resources, and opportunities for energy tech founders of color for a year.

“ACCEL is one of the most impactful, meaningful programs we’ve run to date,” Greentown Labs CEO and President Kevin Knobloch says in a news release. “We are eager to expand upon the great success and momentum of year one, and to welcome another incredible cohort of BIPOC-led startups that are developing much-needed climatetech solutions. We’re equally committed to helping these companies accelerate and deploy their solutions, while also helping to build a more diverse, inclusive climatetech workforce—ACCEL sits at the nexus of those two critical efforts.”

The program, supported by the Massachusetts Clean Energy Center, accelerated six startups this year — Active Surfaces, DrinKicks, EarthBond, florrent, frakktal, and SpadXTech.

“The ACCEL Program directly aligns with our mission to ensure that climatetech jobs and wealth creation opportunities are available to all residents of the Commonwealth,” Emily Reichert, CEO at MassCEC and former CEO at Greentown, says in the release. “We are excited to see the second round of this important program, with our Equity Workforce Fund support fostering a partnership between Greentown Labs and Browning the Green Space aimed at accelerating the growth of minority and women business enterprises in Massachusetts.”

ACCEL, which doles out $25,000 in non-dilutive grant funding to each participant, is also supported by Boston-based Barr Foundation and provides programming from VentureWell, a nonprofit with expertise in climatetech.

“Through our partnership with Greentown and VentureWell, we are able to put our respective strengths together to create an ambitious program to bolster founders of color in climatetech and propel innovations that benefit communities most impacted by climate change,” Kerry Bowie, executive director and president of Browning the Green Space, says in the release. “Opening applications for Year 2 of ACCEL is an important milestone in strengthening critical support for traditionally excluded entrepreneurs in our communities.”

Applications for ACCEL are open until January 5, 2024. While entrepreneurs from anywhere can apply, preference will be given to applicants in Greater Boston and Greater Houston, where Greentown’s incubators are located.

Despite making up more than 57 percent of the workforce, women are still significantly outnumbered by men in STEM professions. The SUPERGirls Shine Foundation is hoping to change that in Houston and beyond. Photo via htxenergytransition.org

Houston organization strives for equity for energy transition for young women in STEM

the view from heti

STEM occupations account for nearly 7 percent of all U.S. occupations, however, according to the Equal Employment Opportunity Commission, women make up only 27 percent of STEM workers. Studies continue to show that between the ages 8 and 14, girls’ confidence levels drop by 30 percent and by the time they reach middle school, they completely lack confidence and self-esteem to pursue science, technology, engineering and mathematics.

Loretta Williams Gurnell is working to change the narrative for Houston students.

In 2016, Gurnell established SUPERGirls Shine Foundation, which is a Houston-based nonprofit organization that is focused on providing underserved girls with the opportunity and resources to succeed in STEM. By providing a strong STEM foundation, the organization equips girls with the tools to excel in professions that traditionally have low female and diverse representation.

In addition, the organization focuses on closing the gender gap in STEM, noting that their goal is to increase the number of girls in STEM classes, degrees and careers by 25 percent by the year 2025. Despite making up more than 57 percent of the workforce, women are still significantly outnumbered by men in STEM professions.

On a yearly basis, SUPERGirls Shine Foundation awards graduating high school seniors and collegiate ambassadors up to $10,000 dollars to close the financial gaps for college degrees. The foundation offers internships for college students and recent graduates to bring awareness, access and equity for more women and girls from underserved communities in STEM, innovation and leadership initiatives.

Through their 40/40 Mentorship Program, the foundation matches high-level industry leaders to grades 8th – 12th to provide skill-building and networking opportunities. The SUPERGirls Collegiate Ambassador Membership Program serves as a network for college students and recent graduates seeking community, careers and access to industry experts and mentors in STEM.

Learn more about Greentown Labs startup SUPERGirls Shine Foundation and how the organization is providing underserved girls with the opportunity and resources to succeed in STEM.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Katie Mehnert, founder and CEO of Ally Energy, is featured in an NOV-produced film about DEI in the energy transition. Photo via allyenergy.com

Short film focused on Houston entrepreneur, energy transition ecosystem releases online

dirty nasty people

In a new short film, a Houston energy entrepreneur sets the scene for the energy industry and showcases her passion for an equitable transition for the sector.

"Dirty Nasty People" originally premiered May 18 to the Houston community. Now, the NOV-produced film featuring Katie Mehnert and her company Ally Energy is available for viewing online.

The film, directed by Paul Dufilho, tells Mehnert's story, her passion for energy, and her career, which began at Enron, grew at Shell and BP, and took her to founding a company dedicated to diversity, equity, and inclusion in the space. Ally Energy, which was founded in 2014 as Pink Petro, is a community and talent platform for the evolving energy industry.

In the movie, Mehnert introduces the dual challenge the industry is facing — and how DEI is integral to solving it.

“On the one hand, we all need energy — affordable, reliable energy — to keep lives going,” she says in the film. “But we are harming the planet. And ourselves.

"It is complicated — this challenge is very complicated," she continues. "But it’s going to take collaboration, and diversity of thought — diversity of energy form. It’s going to take bringing people into the energy industry, into the fold, looking at this challenge in a different way — but it’s all about working together.”

Houston-based NOV Inc., an international oil and gas industry equipment and tech provider, backed the production of the film which was meant to showcase Ally, Mehnert, and the energy transition ecosystem locally.

"The energy workforce of the future will need to be as large and diverse as the technical solutions that will be needed to offset the effects of Climate Change," writes Dufilho on the website. "This project hopes to put a singular human focus on what is one of the largest issues of our day.

"There are already incredible people inside the industry doing the work of developing better energy solutions, and this project highlights just one of them," he continues. "However, the energy problems of the near future will require the perspectives and know-how of those who have not yet seen themselves as part of the solution. The outsider. The consumer. This project is for them."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH's $44 million mass timber building slashed energy use in first year

building up

The University of Houston recently completed assessments on year one of the first mass timber project on campus, and the results show it has had a major impact.

Known as the Retail, Auxiliary, and Dining Center, or RAD Center, the $44 million building showed an 84 percent reduction in predicted energy use intensity, a measure of how much energy a building uses relative to its size, compared to similar buildings. Its Global Warming Potential rating, a ratio determined by the Intergovernmental Panel on Climate Change, shows a 39 percent reduction compared to the benchmark for other buildings of its type.

In comparison to similar structures, the RAD Center saved the equivalent of taking 472 gasoline-powered cars driven for one year off the road, according to architecture firm Perkins & Will.

The RAD Center was created in alignment with the AIA 2030 Commitment to carbon-neutral buildings, designed by Perkins & Will and constructed by Houston-based general contractor Turner Construction.

Perkins & Will’s work reduced the building's carbon footprint by incorporating lighter mass timber structural systems, which allowed the RAD Center to reuse the foundation, columns and beams of the building it replaced. Reused elements account for 45 percent of the RAD Center’s total mass, according to Perkins & Will.

Mass timber is considered a sustainable alternative to steel and concrete construction. The RAD Center, a 41,000-square-foot development, replaced the once popular Satellite, which was a food, retail and hangout center for students on UH’s campus near the Science & Research Building 2 and the Jack J. Valenti School of Communication.

The RAD Center uses more than a million pounds of timber, which can store over 650 metric tons of CO2. Aesthetically, the building complements the surrounding campus woodlands and offers students a view both inside and out.

“Spaces are designed to create a sense of serenity and calm in an ecologically-minded environment,” Diego Rozo, a senior project manager and associate principal at Perkins & Will, said in a news release. “They were conceptually inspired by the notion of ‘unleashing the senses’ – the design celebrating different sights, sounds, smells and tastes alongside the tactile nature of the timber.”

In addition to its mass timber design, the building was also part of an Energy Use Intensity (EUI) reduction effort. It features high-performance insulation and barriers, natural light to illuminate a building's interior, efficient indoor lighting fixtures, and optimized equipment, including HVAC systems.

The RAD Center officially opened Phase I in Spring 2024. The third and final phase of construction is scheduled for this summer, with a planned opening set for the fall.

Experts on U.S. energy infrastructure, sustainability, and the future of data

Guest column

Digital infrastructure is the dominant theme in energy and infrastructure, real estate and technology markets.

Data, the byproduct and primary value generated by digital infrastructure, is referred to as “the fifth utility,” along with water, gas, electricity and telecommunications. Data is created, aggregated, stored, transmitted, shared, traded and sold. Data requires data centers. Data centers require energy. The United States is home to approximately 40% of the world's data centers. The U.S. is set to lead the world in digital infrastructure advancement and has an opportunity to lead on energy for a very long time.

Data centers consume vast amounts of electricity due to their computational and cooling requirements. According to the United States Department of Energy, data centers consume “10 to 50 times the energy per floor space of a typical commercial office building.” Lawrence Berkeley National Laboratory issued a report in December 2024 stating that U.S. data center energy use reached 176 TWh by 2023, “representing 4.4% of total U.S. electricity consumption.” This percentage will increase significantly with near-term investment into high performance computing (HPC) and artificial intelligence (AI). The markets recognize the need for digital infrastructure build-out and, developers, engineers, investors and asset owners are responding at an incredible clip.

However, the energy demands required to meet this digital load growth pose significant challenges to the U.S. power grid. Reliability and cost-efficiency have been, and will continue to be, two non-negotiable priorities of the legal, regulatory and quasi-regulatory regime overlaying the U.S. power grid.

Maintaining and improving reliability requires physical solutions. The grid must be perfectly balanced, with neither too little nor too much electricity at any given time. Specifically, new-build, physical power generation and transmission (a topic worthy of another article) projects must be built. To be sure, innovative financial products such as virtual power purchase agreements (VPPAs), hedges, environmental attributes, and other offtake strategies have been, and will continue to be, critical to growing the U.S. renewable energy markets and facilitating the energy transition, but the U.S. electrical grid needs to generate and move significantly more electrons to support the digital infrastructure transformation.

But there is now a third permanent priority: sustainability. New power generation over the next decade will include a mix of solar (large and small scale, offsite and onsite), wind and natural gas resources, with existing nuclear power, hydro, biomass, and geothermal remaining important in their respective regions.

Solar, in particular, will grow as a percentage of U.S grid generation. The Solar Energy Industries Association (SEIA) reported that solar added 50 gigawatts of new capacity to the U.S. grid in 2024, “the largest single year of new capacity added to the grid by an energy technology in over two decades.” Solar is leading, as it can be flexibly sized and sited.

Under-utilized technology such as carbon capture, utilization and storage (CCUS) will become more prominent. Hydrogen may be a potential game-changer in the medium-to-long-term. Further, a nuclear power renaissance (conventional and small modular reactor (SMR) technologies) appears to be real, with recent commitments from some of the largest companies in the world, led by technology companies. Nuclear is poised to be a part of a “net-zero” future in the United States, also in the medium-to-long term.

The transition from fossil fuels to zero carbon renewable energy is well on its way – this is undeniable – and will continue, regardless of U.S. political and market cycles. Along with reliability and cost efficiency, sustainability has become a permanent third leg of the U.S. power grid stool.

Sustainability is now non-negotiable. Corporate renewable and low carbon energy procurement is strong. State renewable portfolio standards (RPS) and clean energy standards (CES) have established aggressive goals. Domestic manufacturing of the equipment deployed in the U.S. is growing meaningfully and in politically diverse regions of the country. Solar, wind and batteries are increasing less expensive. But, perhaps more importantly, the grid needs as much renewable and low carbon power generation as possible - not in lieu of gas generation, but as an increasingly growing pairing with gas and other technologies. This is not an “R” or “D” issue (as we say in Washington), and it's not an “either, or” issue, it's good business and a physical necessity.

As a result, solar, wind and battery storage deployment, in particular, will continue to accelerate in the U.S. These clean technologies will inevitably become more efficient as the buildout in the U.S. increases, investments continue and technology advances.

At some point in the future (it won’t be in the 2020s, it could be in the 2030s, but, more realistically, in the 2040s), the U.S. will have achieved the remarkable – a truly modern (if not entirely overhauled) grid dependent largely on a mix of zero and low carbon power generation and storage technology. And when this happens, it will have been due in large part to the clean technology deployment and advances over the next 10 to 15 years resulting from the current digital infrastructure boom.

---

Hans Dyke and Gabbie Hindera are lawyers at Bracewell. Dyke's experience includes transactions in the electric power and oil and gas midstream space, as well as transactions involving energy intensive industries such as data storage. Hindera focuses on mergers and acquisitions, joint ventures, and public and private capital market offerings.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

new findings

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.