The data shows the biggest leaks are in the Permian basin of Texas and New Mexico. Photo via Getty Images

American oil and natural gas wells, pipelines and compressors are spewing three times the amount of the potent heat-trapping gas methane as the government thinks, causing $9.3 billion in yearly climate damage, a new comprehensive study calculates.

But because more than half of these methane emissions are coming from a tiny number of oil and gas sites, 1% or less, this means the problem is both worse than the government thought but also fairly fixable, said the lead author of a study in Wednesday's journal Nature.

The same issue is happening globally. Large methane emissions events around the world detected by satellites grew 50% in 2023 compared to 2022 with more than 5 million metric tons spotted in major fossil fuel leaks, the International Energy Agency reported Wednesday in their Global Methane Tracker 2024. World methane emissions rose slightly in 2023 to 120 million metric tons, the report said.

“This is really an opportunity to cut emissions quite rapidly with targeted efforts at these highest emitting sites,” said lead author Evan Sherwin, an energy and policy analyst at the U.S. Department of Energy's Lawrence Berkeley National Lab who wrote the study while at Stanford University. “If we can get this roughly 1% of sites under control, then we're halfway there because that's about half of the emissions in most cases.”

Sherwin said the fugitive emissions come throughout the oil and gas production and delivery system, starting with gas flaring. That's when firms release natural gas to the air or burn it instead of capturing the gas that comes out of energy extraction. There's also substantial leaks throughout the rest of the system, including tanks, compressors and pipelines, he said.

“It's actually straightforward to fix,” Sherwin said.

In general about 3% of the U.S. gas produced goes wasted into the air, compared to the Environmental Protection Agency figures of 1%, the study found. Sherwin said that's a substantial amount, about 6.2 million tons per hour in leaks measured over the daytime. It could be lower at night, but they don't have those measurements.

The study gets that figure using one million anonymized measurements from airplanes that flew over 52% of American oil wells and 29% of gas production and delivery system sites over a decade. Sherwin said the 3% leak figure is the average for the six regions they looked at and they did not calculate a national average.

Methane over a two-decade period traps about 80 times more heat than carbon dioxide, but only lasts in the atmosphere for about a decade instead of hundreds of years like carbon dioxide, according to the EPA.

About 30% of the world's warming since pre-industrial times comes from methane emissions, said IEA energy supply unit head Christophe McGlade. The United States is the No. 1 oil and gas production methane emitter, with China polluting even more methane from coal, he said.

Last December, the Biden administration issued a new rule forcing the U.S. oil and natural gas industry to cut its methane emissions. At the same time at the United Nations climate negotiations in Dubai, 50 oil companies around the world pledged to reach near zero methane emissions and end routine flaring in operations by 2030. That Dubai agreement would trim about one-tenth of a degree Celsius, nearly two-tenths of a degree Fahrenheit, from future warming, a prominent climate scientist told The Associated Press.

Monitoring methane from above, instead of at the sites or relying on company estimates, is a growing trend. Earlier this month the market-based Environmental Defense Fund and others launched MethaneSAT into orbit. For energy companies, the lost methane is valuable with Sherwin's study estimate it is worth about $1 billion a year.

About 40% of the global methane emissions from oil, gas and coal could have been avoided at no extra cost, which is “a massive missed opportunity,” IEA's McGlade said. The IEA report said if countries do what they promised in Dubai they could cut half of the global methane pollution by 2030, but actions put in place so far only would trim 20% instead, “a very large gap between emissions and actions,” McGlade said.

“It is critical to reduce methane emissions if the world is to meet climate targets,” said Cornell University methane researcher Robert Horwath, who wasn't part of Sherwin's study.

“Their analysis makes sense and is the most comprehensive study by far out there on the topic,” said Howarth, who is updating figures in a forthcoming study to incorporate the new data.

The overflight data shows the biggest leaks are in the Permian basin of Texas and New Mexico.

“It's a region of rapid growth, primarily driven by oil production,” Sherwin said. “So when the drilling happens, both oil and gas comes out, but the main thing that the companies want to sell in most cases was the oil. And there wasn't enough pipeline capacity to take the gas away” so it spewed into the air instead.

Contrast that with tiny leak rates found in drilling in the Denver region and the Pennsylvania area. Denver leaks are so low because of local strictly enforced regulations and Pennsylvania is more gas-oriented, Sherwin said.

This shows a real problem with what National Oceanic and Atmospheric Association methane-monitoring scientist Gabrielle Petron calls “super-emitters."

“Reliably detecting and fixing super-emitters is a low hanging fruit to reduce real life greenhouse gas emissions,” Petron, who wasn't part of Sherwin's study, said. “This is very important because these super-emitter emissions are ignored by most ‘official’ accounting.”

Stanford University climate scientist Rob Jackson, who also wasn't part of the study, said, “a few facilities are poisoning the air for everyone.”

“For more than a decade, we’ve been showing that the industry emits far more methane than they or government agencies admit," Jackson said. “This study is capstone evidence. And yet nothing changes.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

reduce, recharge, recycle

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

DOE taps Texas companies for $56M in Strategic Petroleum Reserve deliveries

reserve refill

Two companies with ties to the Houston area have been awarded federal contracts totaling nearly $55.8 million to supply about 1 million barrels of crude oil for the nation’s depleted Strategic Petroleum Reserve.

Houston-based Trafigura Trading will provide two-thirds of the oil, and Dallas-based Energy Transfer Crude Marketing will provide the remaining one-third. Energy Transfer, the parent company of Energy Transfer Crude Marketing, operates a 330-acre oil terminal at the Houston Ship Channel.

The U.S. Department of Energy (DOE), which awarded the contracts, said Trafigura and Energy Transfer will deliver the crude oil from Dec. 1 through Jan. 31 to the Strategic Petroleum Reserve’s Bryan Mound storage site near Freeport.

The Strategic Petroleum Reserve, the world’s largest emergency supply of crude oil, can hold up to 714 million barrels of crude oil across 61 underground salt caverns at four sites along the Gulf Coast. The reserve currently contains 410 million barrels of crude oil. During the pandemic, the Biden administration ordered a 180 million-barrel drawdown from the reserve to help combat high gas prices triggered by Russia’s war with Ukraine.

The four strategic reserve sites are connected to 24 Gulf Coast refineries, and another six refineries in Kentucky, Michigan and Ohio.

“Awarding these contracts marks another step in the important process of refilling this national security asset,” U.S. Energy Secretary Chris Wright said.

In March, Wright estimated it would take $20 billion and many years to fill the Strategic Petroleum Reserve to its maximum capacity, according to Reuters

.