PJ Popovic, founder and CEO of Houston-based Rhythm Energy, which has acquired Inspire Clean Energy. Photo courtesy of Rhythm

Houston-based Rhythm Energy Inc. has acquired Inspire Clean Energy for an undisclosed amount. The deal allows Rhythm to immediately scale outside of Texas and into the Northeast, Midwest and mid-Atlantic regions, according to a release from the company.

Inspire offers subscription-based renewable electricity plans to customers in Pennsylvania, New York, New Jersey, Massachusetts, Ohio, Delaware, Illinois, Maryland, and Washington, D.C. By combining forces, Rhythm will now be one of the largest independent green-energy retailers in the country.

“Adding Inspire to the Rhythm family gives us the geographic reach to serve millions of new customers with the highly rated customer experience Texans already enjoy,” PJ Popovic, CEO of Rhythm, said in the release. “Together we become one of the largest independent green-energy retailers in the country and can roll out innovations like our PowerShift Time-of-Use plan and device-enabled demand-response programs that put customers fully in control of their energy costs.”

Rhythm was founded by Popovic in 2020 and offers 100 percent renewable energy plans using solar power, wind power and other renewable power sources.

In addition to scaling geographically, the acquisition will "(marry) Rhythm's data-driven technology with Inspire's successful subscription model." Rhythm also plans to upgrade its digital tools and provide more advanced services to help lower clean energy costs, according to the release.

Popovic spoke with EnergyCapital in 2023 about where he thinks renewables fit into Texas’s energy consumption. Read more here.

Houston's Calpine Corp. will be acquired by Baltimore-based nuclear power company Constellation Energy Corp. Photo via DOE

Houston-based Calpine Corp. to be acquired in clean energy megadeal

big deal

Baltimore-based nuclear power company Constellation Energy Corp. and Houston-based Calpine Corp. have entered into an agreement where Constellation will acquire Calpine in a cash and stock transaction with an overall net purchase price of $26.6 billion.

The companies say the agreement has the potential to create America’s “largest clean energy provider,” with what is reported to be the largest fleet of U.S. power stations servicing about 2.5 million customers.

“This is an incredible opportunity to bring together top tier generation fleets, leading retail customer businesses and the best people in our industry to help drive a stronger American economy for a cleaner, healthier and more sustainable future,” Andrew Novotny, president and CEO of Calpine, said in a news release.

Calpine is the largest U.S. producer of energy from low-emission natural gas generation and oversees the largest geothermal generation operation in the U.S. Last year it announced plans to build the Baytown Carbon Capture and Storage Project (Baytown CCS Project), a first-of-its-kind carbon capture demonstration facility, as part of a cost-sharing agreement with the U.S. Department of Energy.

Constellation is considered the top clean energy producer in the U.S., which provides 10 percent of the country’s emissions-free energy. The deal will add to Constellation’s already diverse portfolio of zero- and low-emission sources, including nuclear, natural gas, geothermal, hydro, wind, solar, cogeneration and battery storage.

“Both companies have been at the forefront of America’s transition to cleaner, more reliable and secure energy, and those shared values will guide us as we pursue investments in new and existing clean technologies to meet rising demand,” Joe Dominguez, president and CEO of Constellation, said the release. “What makes this combination even more special is it brings together two world-class teams, with the most talented women and men in the industry, who share a noble passion for safety, sustainability, operational excellence and helping America’s families, businesses and communities thrive and grow. We look forward to welcoming the Calpine team upon closing of this transaction.”

Constellation also announced that it will invest in adding more zero-emission energy to the grid to create “the most reliable generation portfolio in the U.S.” It plans to explore new advanced nuclear projects, invest in renewables and increase the output of existing nuclear plants.

“Together, we will be better positioned to bring accelerated investment in everything from zero-emission nuclear energy to battery storage that will power our economy in a way that puts people and our environment first,” Novotny said in a news release. “It’s a win for every American family and business in our newly combined footprint that wants clean and reliable energy. ECP’s commitment to these goals over the last seven years was critical to the progress we have made as a company and to laying a foundation for future growth.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.