Tired of slow tire decomposition? This Houston company has a solution. Photo via InnoVentRenewables.com

Every year, over a billion tires are disposed of globally, and, while in use, tires are used to reach maximum speed on the road, their decomposition times are inordinately slow.

Houston-based InnoVent Renewables has a solution. The company launched this week to drive renewable energy forward with its proprietary continuous pyrolysis technology that is able to convert waste tires, plastics, and biomass into fuels and chemicals.

“We are thrilled to formally launch InnoVent Renewables and plan to ramp-up operations into early 2024," InnoVent Renewables CEO Vibhu Sharma says in a news release. “Our investors, strategic advisors, and management team are all fully committed to our success as we address the global challenge of waste tires. We firmly believe our proven process, deployed at scale globally, will have a huge positive impact on our climate and fill a clear environment need.”

While InnoVent Renewables has only just launched, Sharma has worked in the space for years with his company InnoVent Technology, a technology and consulting company working with clients on turnkey process technology and asset management solutions within the process and manufacturing industries.

During InnoVent's unique material breakdown process, its pyrolysis technology recovers chemicals from the products, and produces high-quality fuels — in in a net-zero capacity. The company's products include renewable pyrolysis oil, or PyOil; aromatics; recovered carbon black, or rCB; and steel wire. PyOil, according to InnoVent's website, can be sold as fuel oil, off-road diesel, or used as a feedstock to crude blending.

"The InnoVent team conducted product quality analysis in conjunction with a world renowned research facility and results were further validated and scaled up in 2022, using comprehensive process simulation software and pre-engineering design work for scale-up," reads the InnoVent website.

Headquartered in Houston, the company has operations in Pune, India, and Monterrey, Mexico, with plans for aggressive growth across North America and Latin America. Specifically, InnoVent is planning to open a commercial production plant in Monterrey next year. Down the road, the company's team hopes to expand in Europe, the Middle East, and Asia-Pacific.

This autonomous freight delivery provider has entered the Texas market. Photo via VAS

Companies in Transition: June 13

ENERGY FOR ALL, BY ALL

As explained at the launch event for EnergyCapitalHTX.com on 1 June by David Gow, CEO of Gow Media, “…we plan to provide informative, unbiased coverage of the Houston-based initiatives, spanning big corporations and startups. We hope that a site dedicated to the transition will bring visibility to the city’s substantive progress and to the path forward.”

This series, Companies in Transition, highlights the latest energy transition activity happening here in the world’s Capital of Energy for companies of all sizes and stages. Natalie Harms, editor of our sister site, Innovation Map, caught up with a couple of such companies making strides last week.

Volvo Group announces new self-driving freight routes across Texas

A global car brand has expanded its autonomous transport-as-a-service company to Texas.

Volvo Autonomous Solutions, or VAS, announced it has established an office in Fort Worth to set up its first self-driving freight corridors between Dallas-Fort Worth and El Paso, as well as from Dallas to Houston. Ahead of commercial launch, VAS has started hauling freight for key customers like DHL and Uber Freight for testing purposes.

"At Volvo Autonomous Solutions, we believe the path to autonomy at scale is through reducing the friction and complications around ownership and operations for customers," says Nils Jaeger, president of VAS, in a news release. "This is why we have taken the decision to be the single interface to our customers and take full ownership of the elements required for commercial autonomous transport. With the opening of our office in Texas and start of operational activities, we are building the foundations for a transport solution that will change the way we move goods on highways."

As a part of the Volvo Group, VAS provides its Autonomous Transport Solutions — a combination of hardware, software, and services — to its customers. The company has a partnership with Aurora, which includes the integration of the Aurora Driver with Volvo's on-highway truck offering.

To learn more about how Volvo is building efficiency for the entire supply chain, head on over to InnovationMap to read more.

Multinational manufacturer partners with Greentown for new startup accelerator

A climatetech incubator with locations in Houston and Somerville, Massachusetts, has announced an accelerator program with a corporate partner.

Greentown Labs and Saint-Gobain, a multinational manufacturer and distributor of high-performance materials, have opened applications for Greentown Go Build 2023. The program intends to support and accelerate startup-corporate partnerships to advance climatetech, specifically focused on circularity and decarbonizing the built environment per a news release from Greentown.

“The Greentown Go Build program is an opportunity for innovative startups to share how they are disrupting the construction market with innovative and sustainable solutions that address the need for circularity and sustainability and that align with our mission of making the world a better home,” says Minas Apelian, vice president of external and internal venturing at Saint-Gobain. “Through this program, we are eager to identify companies dedicated to reducing our reliance on raw materials and associated supply chain risk to ensure circular solutions result in profitable, sustainable growth for business and sustainable construction solutions for our industries.”

Find out if your company is a fit for this prestigious opportunity over at InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston companies scoop up $31 million in funds from DOE, EPA methane emissions program

fresh funds

The U.S. Department of Energy and the U.S. Environmental Protection Agency announced the selection of seven projects from Houston companies to receive funding through the Methane Emissions Reduction Program.

The projects are among 43 others nationwide, including 12 from Texas, that reduce, monitor, measure, and quantify methane emissions from the oil and gas sector. The DOE and EPA awarded $850 million in total through the program.

The Houston companies picked up $31.7 million in federal funding through the program in addition to more than $9.5 million in non-federal dollars.

“I’m excited about the opportunities these will create internally but even more so the creation of jobs and training opportunities for the communities in which we work,” Scott McCurdy, Encino Environmental Services CEO, said in a news release. His company received awards for two projects.

“These projects will allow us to further support and strengthen the U.S. Energy industry’s ability to deliver clean, reliable, and affordable energy globally,” he added.

The Houston-area awards included:

DaphneTech USA LLC

Total funding: $5.8 million (approximately $4.5 million in federal, $1.3 million in non-federal)

The award was granted for the company’s Daphne and Williams Methane Slip Abatement Plasma-Catalyst Scale-Up project. Daphne will study how its SlipPure technology, a novel exhaust gas cleaning system that abates methane and exhaust gas pollution from natural gas-fueled engines, can be economically viable across multiple engine types and operating conditions.

Baker Hughes Energy Transition LLC 

Total funding: $7.47 million (approximately $6 million in federal, $1.5 million in non-federal)

The award was granted for the company’s Advancing Low Cost CH4 Emissions Reduction from Flares through Large Scale Deployment of Retrofittable and Adaptive Technology project. The project aims to develop a scalable, integrated methane emissions reduction system for flares based on optical gas imaging and estimation algorithms.

Encino Environmental Services

Total funding: $15.17 million (approximately $11 million in federal, $4.17 million in non-federal)

The award was granted for two projects. The Advanced Methane Reduction System: Integrating Infrared and Visual Imaging to Assess Net Heating Value at the Combustion Zone and Determine Combustion Efficiency to Enhance Flaring Performance project aims to develop and deploy an advanced continuous emissions monitoring system. It’s Advancing Methane Emissions Reduction through Innovative Technology project will develop and deploy a technology using sensors and composite materials to address emissions originating in storage tanks.

Envana Software Solutions

Total funding: $5.26 million (approximately $4.2 million in federal, $1 million in non-federal)

The award was granted for the company’s Leak Detection and Reduction Software to Identify Methane Emissions and Trigger Mitigation at Oil and Gas Production Facilities Based on SCADA Data project. It aims to improve its Recon software for monitoring methane emissions and develop partnerships with local universities and organizations.

Capwell Services Inc.

Total funding: $4.19 million (approximately $3.3 million in federal, $837,000 in non-federal)

The award was granted for its Methane Emissions Abatement Technology for Low-Flow and Intermittent Emission Sources project. It aims to to deploy and field-test a methane abatement unit and improve air quality and health outcomes for communities near production facilities and establish field technician internships for local residents.

Blue Sky Measurements 

Total funding: $3.41 million (approximately $2.7 million in federal, $683,000 in non-federal)

The award was granted for its Field Validation of Novel Fixed Position Optical Sensor for Fugitive Methane Emission Detection Quantification and Location with Real-Time Notification for Rapid Mitigation project. It aims to field test an optical sensing technology at six well sites in the Permian Basin.

Southern Methodist University, The University of Texas at Austin, Texas A&M Engineering Experiment Station and Hyliion Inc. were other Texas-based organizations to earn awards. See the full list of projects here.

Texas university's 'WaterHub' will dramatically reduce water usage by 40%

Sustainable Move

A major advancement in sustainability is coming to one Texas university. A new UT WaterHub at the University of Texas at Austin will be the largest facility of its kind in the U.S. and will transform how the university manages its water resources.

It's designed to work with natural processes instead of against them for water savings of an estimated 40 percent. It's slated for completion in late 2027.

The university has had an active water recovery program since the 1980s. Still, water is becoming an increasing concern in Austin. According to Texas Living Waters, a coalition of conservation groups, Texas loses enough water annually to fill Lady Bird Lake roughly 89 times over.

As Austin continues to expand and face water shortages, the region's water supply faces increased pressure. The UT WaterHub plans to address this challenge by recycling water for campus energy operations, helping preserve water resources for both the university and local communities.

The 9,600-square-foot water treatment facility will use an innovative filtration approach. To reduce reliance on expensive machinery and chemicals, the system uses plants to naturally filter water and gravity to pull it in the direction it needs to go. Used water will be gathered from a new collection point near the Darrell K Royal Texas Memorial Stadium and transported to the WaterHub, located in the heart of the engineering district. The facility's design includes a greenhouse viewable to the public, serving as an interactive learning space.

Beyond water conservation, the facility is designed to protect the university against extreme weather events like winter storms. This new initiative will create a reliable backup water supply while decreasing university water usage, and will even reduce wastewater sent to the city by up to 70 percent.

H2O Innovation, UT’s collaborator in this project, specializes in water solutions, helping organizations manage their water efficiently.

"By combining cutting-edge technology with our innovative financing approach, we’re making it easier for organizations to adopt sustainable water practices that benefit both their bottom line and the environment, paving a step forward in water positivity,” said H2O Innovation president and CEO Frédéric Dugré in a press release.

The university expects significant cost savings with this project, since it won't have to spend as much on buying water from the city or paying fees to dispose of used water. Over the next several years, this could add up to millions of dollars.

---

A version of this story originally appeared on our sister site, CultureMap Austin.

Report: Texas solar power, battery storage helped stabilize grid in summer 2024, but challenges remain

by the numbers

Research from the Federal Reserve Bank of Dallas shows that solar power and battery storage capacity helped stabilize Texas’ electric grid last summer.

Between June 1 and Aug. 31, solar power met nearly 25 percent of midday electricity demand within the Electric Reliability Council of Texas (ERCOT) power grid. Rising solar and battery output in ERCOT assisted Texans during a summer of triple-digit heat and record load demands, but the report fears that the state’s power load will be “pushed to its limits” soon.

The report examined how the grid performed during more demanding hours. At peak times, between 11 a.m. and 2 p.m. in the summer of 2024, solar output averaged nearly 17,000 megawatts compared with 12,000 megawatts during those hours in the previous year. Between 6 p.m. and 9 p.m., discharge from battery facilities averaged 714 megawatts in 2024 after averaging 238 megawatts for those hours in 2023. Solar and battery output have continued to grow since then, according to the report.

“Batteries made a meaningful contribution to what those shoulder periods look like and how much scarcity we get into during these peak events,” ERCOT CEO Pablo Vegas said at a board of directors conference call.

Increases in capacity from solar and battery-storage power in 2024 also eclipsed those of 2023. In 2023 ECOT added 4,570 megawatts of solar, compared to adding nearly 9,700 megawatts in 2024. Growth in battery storage capacity also increased from about 1,500 megawatts added in 2023 to more than 4,000 megawatts added in 2024. Natural gas capacity also saw increases while wind capacity dropped by about 50 percent.

Texas’ installation of utility-scale solar surpassed California’s in the spring of last year, and jumped from 1,900 megawatts in 2019 to over 20,000 megawatts in 2024 with solar meeting about 50 percent of Texas' peak power demand during some days.

While the numbers are encouraging, the report states that there could be future challenges, as more generating capacity will be required due to data center construction and broader electrification trends. The development of generating more capacity will rely on multiple factors like price signals and market conditions that invite more baseload and dispatchable generating capacity, which includes longer-duration batteries, and investment in power purchase agreements and other power arrangements by large-scale consumers, according to the report.

Additionally, peak demand during winter freezes presents challenges not seen in the summer. For example, in colder months, peak electricity demand often occurs in the early morning before solar energy is available, and it predicts that current battery storage may be insufficient to meet the demand. The analysis indicated a 50% chance of rolling outages during a cold snap similar to December 2022 and an 80% chance if conditions mirror the February 2021 deep freeze at the grid’s current state.

The report also claimed that ERCOT’s energy-only market design and new incentive structures, such as the Texas Energy Fund, do not appear to be enough to meet the predicted future magnitude and speed of load growth.

Read the full report here.