The National Academy of Inventors has honored two inventors in Houston within the energy field with their annual professional distinction. Photos via UH.edu

Two professors from the University of Houston have been admitted as fellows to the National Academy of Inventors.

Vincent Donnelly, Moores professor of Chemical and Biomolecular Engineering, and Christine Ehlig-Economides, Hugh Roy and Lillie Cranz Cullen Distinguished university chair of Petroleum Engineering, received the Fellows honor, which is the highest professional distinction awarded to academic inventors.

UH now has 39 professors who are either Fellows or Senior Members of the NAI. Donnelly and Ehlig-Economides will be inducted as NAI fellows at the NAI 13th annual meeting on June 18 in Raleigh, North Carolina.

“The remarkable contributions of the two new NAI Fellows from the University of Houston have left a lasting imprint, earning them high esteem in their respective fields,” Ramanan Krishnamoorti, vice president for research and technology at UH, says in a statement. “Their work stands as a testament to the extraordinary impact inventors can have, reflecting a standard of excellence that truly sets them apart.”

Donnelly, who is considered a pioneer in plasma science with applications to microelectronics and nanotechnology, was elevated to Fellow for his research on complex plasma systems used in the making of microchips. Ehlig-Economides was elevated to NAI fellow for her vital research leading to innovative solutions in the energy and industrial fields. Ehlig-Economides was also the first woman in the United States to earn a doctorate degree in petroleum engineering.

Two other Houston instructors from the University of Texas MD Anderson Cancer Center will be inducted to the program in the new year. Jeffrey H. Siewerdsen, professor within the department of Imaging Physics and the Division of Diagnostic Imaging, and Anil Sood, professor and vice chair for Translational Research in the Departments of Gynecologic Oncology and Cancer Biology and co-director of the Center for RNA Interference and Non-Coding RNA.

Some other notable Texas honorees among the 2024 appointees include:

  • Mark Benden, Texas A&M University
  • Arumugam Manthiram, the University of Texas at Austin
  • Werner Kuhr, Texas Tech University
  • Balakrishna Haridas, Texas A&M University
  • P.Reddy, Texas Tech University Health Sciences Center

“This year’s class of NAI Fellows showcases the caliber of researchers that are found within the innovation ecosystem. Each of these individuals are making significant contributions to both science and society through their work,” Dr. Paul R. Sanberg, president of the NAI, says in the release. “This new class, in conjunction with our existing Fellows, are creating innovations that are driving crucial advancements across a variety of disciplines and are stimulating the global and national economy in immeasurable ways as they move these technologies from lab to marketplace.

UH also ranks 60th on the National Academy of Inventors’ list of the top 100 universities for utility patents granted last year in the U.S. In 2022, UH received 32 utility patents. The university explains that utility patents are among the world’s most valuable assets because they give inventors exclusive commercial rights for producing and using their technology.

———

This article originally ran on InnovationMap.

Researchers at the University of Houston are proposing that supplying hydrogen for transportation in the greater Houston area could also be profitable. Photo via UH.edu

Houston research shows how much hydrogen-powered vehicles would cost at the pump

hi, hydrogen

It's generally understood that transitioning away from gas-powered vehicles will help reduce the 230 million metric tons of carbon dioxide gas released each year by the transportation sector in Texas.

Now, researchers at the University of Houston are proposing that supplying hydrogen for transportation in the greater Houston area could also be profitable.

The research team has done the math. In a white paper, "Competitive Pricing of Hydrogen as an Economic Alternative to Gasoline and Diesel for the Houston Transportation Sector," the team compared three hydrogen generation processes—steam methane reforming (SMR), SMR with carbon capture (SMRCC), and electrolysis using grid electricity and water—and provided cost estimates and delivery models for each.

The team found that SMRCC hydrogen can be supplied at about $6.10 per kilogram of hydrogen at the pump, which they say is competitive and shows promise for hydrogen-powered fuel cell electric vehicles (FCEVs).

FCEVs refuel with hydrogen in five minutes and produce zero emissions, according to UH.

"This research underscores the transformative potential of hydrogen in the transportation sector,” Alexander Economides, a co-author on the study, UH alumnus and CEO Kiribex Inc., said in the statement. “Our findings indicate that hydrogen can be a cost-competitive and environmentally responsible choice for consumers, businesses, and policymakers in the greater Houston area."

Economides was joined on the paper by co-authors Christine Ehlig-Economides, professor and Hugh Roy and Lillie Cranz Cullen Distinguished University Chair at UH, and Paulo Liu, research associate in the Department of Petroleum Engineering at UH.

Additionally, the team says Houston is an ideal leader for this transition.

“(Houston) has more than sufficient water and commercial filtering systems to support hydrogen generation,” the study states. “Add to that the existing natural gas pipeline infrastructure, which makes hydrogen production and supply more cost effective and makes Houston ideal for transitioning from traditional vehicles to hydrogen-powered ones.”

The study also discusses tax incentives, consumer preferences, grid generation costs and many other details.

Onshore upstream meets greener pastures in the city where the earth meets the sky at URTeC 2023 in Denver. Photo via Shuttersock.

Can't miss: Unconventional Resources Technology Conference

ROAD TRIP

June 13-15 | Unconvetional Resources Technology Conference (URTeC)

Take a trip to higher ground and cooler temperatures next week at URTeC 2023 in Denver, Colorado. This technically focused event, hosted annually by the Society of Petroleum Engineers, American Association of Petroleum Geologists, and Society of Exploration Geophysicists, features the best and brightest minds in onshore oil and gas sharing novel applications of science and technology in pursuit of a more sustainable upstream energy base.

The event kicks off with almost two hours of discussion amongst industry leaders like Clay Gaspar, executive vice president and COO of Devon Energy, Amy Henry, CEO of Eunike Ventures, Robert E. Fast, CTO of Hess Corporation, and Neil McMahon, managing partner of Kimmeridge. The plenary panel will address the role of unconventionals in a lower carbon energy world, from tackling emissions to making advances in CCUS.

Chevron puts safety in the spotlight with a two-part session devoted to cleaner, more efficient engineering methodologies deployed to support corporate objectives while safely delivering higher returns and lower carbon. Hear from Vice President of the Rockies business unit, Kim McHugh, Johannes Alvarez, EOR and CO2 advisor for the Mid-Continent business unit, Vanessa Ryan, methane reduction manager of strategy and sustainability, and more leaders across Chevron building a new future for upstream energy.

Before the event wraps, be sure to catch an engaging discussion late Thursday morning with Christine Ehlig-Economides, professor and Hugh Roy & Lillie Cranz Cullen Distinguished University Chair at the University of Houston, on decarbonizing tight oil and shale gas, re-use opportunities for wastewater, and repurposed operations through closed-loop geothermal.

Registration currently remains open, with one- and three-day event options, as well as an exhibit hall-only option. The event usually draws over 3,000 attendees, so don’t wait to sign up.

For a complete list of upcoming energy events, visit the Events tab right here on EnergyCapitalHTX.com.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

How Planckton Data is building the sustainability label every industry will need

now streaming

There’s a reason “carbon footprint” became a buzzword. It sounds like something we should know. Something we should measure. Something that should be printed next to the calorie count on a label.

But unlike calories, a carbon footprint isn’t universal, standardized, or easy to calculate. In fact, for most companies—especially in energy and heavy industry—it’s still a black box.

That’s the problem Planckton Data is solving.

On this episode of the Energy Tech Startups Podcast, Planckton Data co-founders Robin Goswami and Sandeep Roy sit down to explain how they’re turning complex, inconsistent, and often incomplete emissions data into usable insight. Not for PR. Not for green washing. For real operational and regulatory decisions.

And they’re doing it in a way that turns sustainability from a compliance burden into a competitive advantage.

From calories to carbon: The label analogy that actually works

If you’ve ever picked up two snack bars and compared their calorie counts, you’ve made a decision based on transparency. Robin and Sandeep want that same kind of clarity for industrial products.

Whether it’s a shampoo bottle, a plastic feedstock, or a specialty chemical—there’s now consumer and regulatory pressure to know exactly how sustainable a product is. And to report it.

But that’s where the simplicity ends.

Because unlike food labels, carbon labels can’t be standardized across a single factory. They depend on where and how a product was made, what inputs were used, how far it traveled, and what method was used to calculate the data.

Even two otherwise identical chemicals—one sourced from a refinery in Texas and the other in Europe—can carry very different carbon footprints, depending on logistics, local emission factors, and energy sources.

Planckton’s solution is built to handle exactly this level of complexity.

AI that doesn’t just analyze

For most companies, supply chain emissions data is scattered, outdated, and full of gaps.

That’s where Planckton’s use of AI becomes transformative.

  • It standardizes data from multiple suppliers, geographies, and formats.
  • It uses probabilistic models to fill in the blanks when suppliers don’t provide details.
  • It applies industry-specific product category rules (PCRs) and aligns them with evolving global frameworks like ISO standards and GHG Protocol.
  • It helps companies model decarbonization pathways, not just calculate baselines.

This isn’t generative AI for show. It’s applied machine learning with a purpose: helping large industrial players move from reporting to real action.

And it’s not a side tool. For many of Planckton’s clients, it’s becoming the foundation of their sustainability strategy.

From boardrooms to smokestacks: Where the pressure is coming from

Planckton isn’t just chasing early adopters. They’re helping midstream and upstream industrial suppliers respond to pressure coming from two directions:

  1. Downstream consumer brands—especially in cosmetics, retail, and CPG—are demanding footprint data from every input supplier.
  2. Upstream regulations—especially in Europe—are introducing reporting requirements, carbon taxes, and supply chain disclosure laws.

The team gave a real-world example: a shampoo brand wants to differentiate based on lower emissions. That pressure flows up the value chain to the chemical suppliers. Who, in turn, must track data back to their own suppliers.

It’s a game of carbon traceability—and Planckton helps make it possible.

Why Planckton focused on chemicals first

With backgrounds at Infosys and McKinsey, Robin and Sandeep know how to navigate large-scale digital transformations. They also know that industry specificity matters—especially in sustainability.

So they chose to focus first on the chemicals sector—a space where:

  • Supply chains are complex and often opaque.
  • Product formulations are sensitive.
  • And pressure from cosmetics, packaging, and consumer brands is pushing for measurable, auditable impact data.

It’s a wedge into other verticals like energy, plastics, fertilizers, and industrial manufacturing—but one that’s already showing results.

Carbon accounting needs a financial system

What makes this conversation unique isn’t just the product. It’s the co-founders’ view of the ecosystem.

They see a world where sustainability reporting becomes as robust as financial reporting. Where every company knows its Scope 1, 2, and 3 emissions the way it knows revenue, gross margin, and EBITDA.

But that world doesn’t exist yet. The data infrastructure isn’t there. The standards are still in flux. And the tooling—until recently—was clunky, manual, and impossible to scale.

Planckton is building that infrastructure—starting with the industries that need it most.

Houston as a launchpad (not just a legacy hub)

Though Planckton has global ambitions, its roots in Houston matter.

The city’s legacy in energy and chemicals gives it a unique edge in understanding real-world industrial challenges. And the growing ecosystem around energy transition—investors, incubators, and founders—is helping companies like Planckton move fast.

“We thought we’d have to move to San Francisco,” Robin shares. “But the resources we needed were already here—just waiting to be activated.”

The future of sustainability is measurable—and monetizable

The takeaway from this episode is clear: measuring your carbon footprint isn’t just good PR—it’s increasingly tied to market access, regulatory approval, and bottom-line efficiency.

And the companies that embrace this shift now—using platforms like Planckton—won’t just stay compliant. They’ll gain a competitive edge.

Listen to the full conversation with Planckton Data on the Energy Tech Startups Podcast:

Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Gold H2 harvests clean hydrogen from depleted California reservoirs in first field trial

breakthrough trial

Houston climatech company Gold H2 completed its first field trial that demonstrates subsurface bio-stimulated hydrogen production, which leverages microbiology and existing infrastructure to produce clean hydrogen.

Gold H2 is a spinoff of another Houston biotech company, Cemvita.

“When we compare our tech to the rest of the stack, I think we blow the competition out of the water," Prabhdeep Singh Sekhon, CEO of Gold H2 Sekhon previously told Energy Capital.

The project represented the first-of-its-kind application of Gold H2’s proprietary biotechnology, which generates hydrogen from depleted oil reservoirs, eliminating the need for new drilling, electrolysis or energy-intensive surface facilities. The Woodlands-based ChampionX LLC served as the oilfield services provider, and the trial was conducted in an oilfield in California’s San Joaquin Basin.

According to the company, Gold H2’s technology could yield up to 250 billion kilograms of low-carbon hydrogen, which is estimated to provide enough clean power to Los Angeles for over 50 years and avoid roughly 1 billion metric tons of CO2 equivalent.

“This field trial is tangible proof. We’ve taken a climate liability and turned it into a scalable, low-cost hydrogen solution,” Sekhon said in a news release. “It’s a new blueprint for decarbonization, built for speed, affordability, and global impact.”

Highlights of the trial include:

  • First-ever demonstration of biologically stimulated hydrogen generation at commercial field scale with unprecedented results of 40 percent H2 in the gas stream.
  • Demonstrated how end-of-life oilfield liabilities can be repurposed into hydrogen-producing assets.
  • The trial achieved 400,000 ppm of hydrogen in produced gases, which, according to the company,y is an “unprecedented concentration for a huff-and-puff style operation and a strong indicator of just how robust the process can perform under real-world conditions.”
  • The field trial marked readiness for commercial deployment with targeted hydrogen production costs below $0.50/kg.

“This breakthrough isn’t just a step forward, it’s a leap toward climate impact at scale,” Jillian Evanko, CEO and president at Chart Industries Inc., Gold H2 investor and advisor, added in the release. “By turning depleted oil fields into clean hydrogen generators, Gold H2 has provided a roadmap to produce low-cost, low-carbon energy using the very infrastructure that powered the last century. This changes the game for how the world can decarbonize heavy industry, power grids, and economies, faster and more affordably than we ever thought possible.”

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.