The National Academy of Inventors has honored two inventors in Houston within the energy field with their annual professional distinction. Photos via UH.edu

Two professors from the University of Houston have been admitted as fellows to the National Academy of Inventors.

Vincent Donnelly, Moores professor of Chemical and Biomolecular Engineering, and Christine Ehlig-Economides, Hugh Roy and Lillie Cranz Cullen Distinguished university chair of Petroleum Engineering, received the Fellows honor, which is the highest professional distinction awarded to academic inventors.

UH now has 39 professors who are either Fellows or Senior Members of the NAI. Donnelly and Ehlig-Economides will be inducted as NAI fellows at the NAI 13th annual meeting on June 18 in Raleigh, North Carolina.

“The remarkable contributions of the two new NAI Fellows from the University of Houston have left a lasting imprint, earning them high esteem in their respective fields,” Ramanan Krishnamoorti, vice president for research and technology at UH, says in a statement. “Their work stands as a testament to the extraordinary impact inventors can have, reflecting a standard of excellence that truly sets them apart.”

Donnelly, who is considered a pioneer in plasma science with applications to microelectronics and nanotechnology, was elevated to Fellow for his research on complex plasma systems used in the making of microchips. Ehlig-Economides was elevated to NAI fellow for her vital research leading to innovative solutions in the energy and industrial fields. Ehlig-Economides was also the first woman in the United States to earn a doctorate degree in petroleum engineering.

Two other Houston instructors from the University of Texas MD Anderson Cancer Center will be inducted to the program in the new year. Jeffrey H. Siewerdsen, professor within the department of Imaging Physics and the Division of Diagnostic Imaging, and Anil Sood, professor and vice chair for Translational Research in the Departments of Gynecologic Oncology and Cancer Biology and co-director of the Center for RNA Interference and Non-Coding RNA.

Some other notable Texas honorees among the 2024 appointees include:

  • Mark Benden, Texas A&M University
  • Arumugam Manthiram, the University of Texas at Austin
  • Werner Kuhr, Texas Tech University
  • Balakrishna Haridas, Texas A&M University
  • P.Reddy, Texas Tech University Health Sciences Center

“This year’s class of NAI Fellows showcases the caliber of researchers that are found within the innovation ecosystem. Each of these individuals are making significant contributions to both science and society through their work,” Dr. Paul R. Sanberg, president of the NAI, says in the release. “This new class, in conjunction with our existing Fellows, are creating innovations that are driving crucial advancements across a variety of disciplines and are stimulating the global and national economy in immeasurable ways as they move these technologies from lab to marketplace.

UH also ranks 60th on the National Academy of Inventors’ list of the top 100 universities for utility patents granted last year in the U.S. In 2022, UH received 32 utility patents. The university explains that utility patents are among the world’s most valuable assets because they give inventors exclusive commercial rights for producing and using their technology.

———

This article originally ran on InnovationMap.

Researchers at the University of Houston are proposing that supplying hydrogen for transportation in the greater Houston area could also be profitable. Photo via UH.edu

Houston research shows how much hydrogen-powered vehicles would cost at the pump

hi, hydrogen

It's generally understood that transitioning away from gas-powered vehicles will help reduce the 230 million metric tons of carbon dioxide gas released each year by the transportation sector in Texas.

Now, researchers at the University of Houston are proposing that supplying hydrogen for transportation in the greater Houston area could also be profitable.

The research team has done the math. In a white paper, "Competitive Pricing of Hydrogen as an Economic Alternative to Gasoline and Diesel for the Houston Transportation Sector," the team compared three hydrogen generation processes—steam methane reforming (SMR), SMR with carbon capture (SMRCC), and electrolysis using grid electricity and water—and provided cost estimates and delivery models for each.

The team found that SMRCC hydrogen can be supplied at about $6.10 per kilogram of hydrogen at the pump, which they say is competitive and shows promise for hydrogen-powered fuel cell electric vehicles (FCEVs).

FCEVs refuel with hydrogen in five minutes and produce zero emissions, according to UH.

"This research underscores the transformative potential of hydrogen in the transportation sector,” Alexander Economides, a co-author on the study, UH alumnus and CEO Kiribex Inc., said in the statement. “Our findings indicate that hydrogen can be a cost-competitive and environmentally responsible choice for consumers, businesses, and policymakers in the greater Houston area."

Economides was joined on the paper by co-authors Christine Ehlig-Economides, professor and Hugh Roy and Lillie Cranz Cullen Distinguished University Chair at UH, and Paulo Liu, research associate in the Department of Petroleum Engineering at UH.

Additionally, the team says Houston is an ideal leader for this transition.

“(Houston) has more than sufficient water and commercial filtering systems to support hydrogen generation,” the study states. “Add to that the existing natural gas pipeline infrastructure, which makes hydrogen production and supply more cost effective and makes Houston ideal for transitioning from traditional vehicles to hydrogen-powered ones.”

The study also discusses tax incentives, consumer preferences, grid generation costs and many other details.

Onshore upstream meets greener pastures in the city where the earth meets the sky at URTeC 2023 in Denver. Photo via Shuttersock.

Can't miss: Unconventional Resources Technology Conference

ROAD TRIP

June 13-15 | Unconvetional Resources Technology Conference (URTeC)

Take a trip to higher ground and cooler temperatures next week at URTeC 2023 in Denver, Colorado. This technically focused event, hosted annually by the Society of Petroleum Engineers, American Association of Petroleum Geologists, and Society of Exploration Geophysicists, features the best and brightest minds in onshore oil and gas sharing novel applications of science and technology in pursuit of a more sustainable upstream energy base.

The event kicks off with almost two hours of discussion amongst industry leaders like Clay Gaspar, executive vice president and COO of Devon Energy, Amy Henry, CEO of Eunike Ventures, Robert E. Fast, CTO of Hess Corporation, and Neil McMahon, managing partner of Kimmeridge. The plenary panel will address the role of unconventionals in a lower carbon energy world, from tackling emissions to making advances in CCUS.

Chevron puts safety in the spotlight with a two-part session devoted to cleaner, more efficient engineering methodologies deployed to support corporate objectives while safely delivering higher returns and lower carbon. Hear from Vice President of the Rockies business unit, Kim McHugh, Johannes Alvarez, EOR and CO2 advisor for the Mid-Continent business unit, Vanessa Ryan, methane reduction manager of strategy and sustainability, and more leaders across Chevron building a new future for upstream energy.

Before the event wraps, be sure to catch an engaging discussion late Thursday morning with Christine Ehlig-Economides, professor and Hugh Roy & Lillie Cranz Cullen Distinguished University Chair at the University of Houston, on decarbonizing tight oil and shale gas, re-use opportunities for wastewater, and repurposed operations through closed-loop geothermal.

Registration currently remains open, with one- and three-day event options, as well as an exhibit hall-only option. The event usually draws over 3,000 attendees, so don’t wait to sign up.

For a complete list of upcoming energy events, visit the Events tab right here on EnergyCapitalHTX.com.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”

Expert examines how far Texas has come in energy efficiency

Guest Column

Texas leads the nation in energy production, providing about one-fourth of the country’s domestically produced primary energy. It is also the largest energy-consuming state, accounting for about one-seventh of the nation’s total energy use, and ranks sixth among the states in per capita energy consumption.

However, because Texas produces significantly more energy than it consumes, it stands as the nation’s largest net energy supplier. October marked National Energy Awareness Month, so this is an ideal time to reflect on how far Texas has come in improving energy efficiency.

Progress in Clean Energy and Grid Resilience

Texas continues to lead the nation in clean energy adoption and grid modernization, particularly in wind and solar power. With over 39,000 MW of wind capacity, Texas ranks first in the country in wind-powered electricity generation, now supplying more than 10% of the state’s total electricity.

This growth was significantly driven by the Renewable Portfolio Standard (RPS), which requires utility companies to produce new renewable energy in proportion to their market share. Initially, the RPS aimed to generate 10,000 MW of renewable energy capacity by 2025. Thanks to aggressive capacity building, this ambitious target was reached much earlier than anticipated.

Solar energy is also expanding rapidly, with Texas reaching 16 GW of solar capacity as of April 2024. The state has invested heavily in large-scale solar farms and supportive policies, contributing to a cleaner energy mix.

Texas is working to integrate both wind and solar to create a more resilient and cost-effective grid. Efforts to strengthen the grid also include regulatory changes, winterization mandates, and the deployment of renewable storage solutions.

While progress is evident, experts stress the need for continued improvements to ensure grid reliability during extreme weather events, when we can’t rely on the necessities for these types of energy sources to thrive. To put it simply, the sun doesn’t always shine, and the wind doesn’t always blow.

Federal Funding Boosts Energy Efficiency

In 2024, Texas received $22.4 million, the largest share of a $66 million federal award, from the U.S. Department of Energy’s Energy Efficiency Revolving Loan Fund Capitalization Grant Program.

The goal of this funding is to channel federal dollars into local communities to support energy-efficiency projects through state-based loans and grants. According to the DOE, these funds can be used by local businesses, homeowners, and public institutions for energy audits, upgrades, and retrofits that reduce energy consumption.

The award will help establish a new Texas-based revolving loan fund modeled after the state’s existing LoanSTAR program, which already supports cost-effective energy retrofits for public facilities and municipalities. According to the Texas Comptroller, as of 2023, the LoanSTAR program had awarded more than 337 loans totaling over $600 million.

In addition to expanding the revolving loan model, the state plans to use a portion of the DOE funds to offer free energy audit services to the public. The grant program is currently under development.

Building on this momentum, in early 2025, Texas secured an additional $689 million in federal funding to implement the Home Energy Performance-Based, Whole House (HOMES) rebate program and the Home Electrification and Application Rebate (HEAR) program.

This investment is more than five times the state’s usual energy efficiency spending. Texas’s eight private Transmission and Distribution Utilities typically spend about $110 million annually on such measures. The state will have multiple years to roll out both the revolving loan and rebate programs.

However, valuable federal tax incentives for energy-efficient home improvements are set to expire on December 31, 2025, including:

  • The Energy Efficiency Home Improvement Credit allows homeowners to claim up to $3,200 per year in federal income tax credits, covering 30% of the cost of eligible upgrades, such as insulation, windows, doors, and high-efficiency heating and cooling systems.
  • The Residential Clean Energy Credit provides a 30% income tax credit for the installation of qualifying clean energy systems, including rooftop solar panels, wind turbines, geothermal heat pumps, and battery storage systems.

As these incentives wind down, the urgency grows for Texas to build on the positive gains from the past several years despite reduced federal funding. The state has already made remarkable strides in clean energy production, grid modernization, and energy-efficiency investments, but the path forward requires a strategic and inclusive approach to energy planning. Through ongoing state-federal collaboration, community-driven initiatives, and forward-looking policy reforms, Texas can continue its progress, ensuring that future energy challenges are met with sustainable and resilient solutions.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.