Gaurab Chakrabarti and Sean Hunt were originally named regional winners in this year's competition this summer along with nine other Houston entrepreneurs. Photos via solugen.com

Houston’s Gaurab Chakrabarti and Sean Hunt, the founders of the transformative chemical manufacturing company Solugen, have been named EY’s US National Award winners for Entrepreneur of the Year.

Solugen, also recently named a finalist in the 2023 Houston Innovation Awards, is an environmentally friendly approach that relies on smaller chemical refineries that helps in reducing costs and transportation-related emissions.

Some of their noted accomplishments includes innovations like the proprietary reactor, dubbed the Bioforge, which is a carbon-negative molecule factory and manufacturing process produces zero wastewater or emissions compared with traditional petrochemical refineries.The Bioforge uses a chemienzymatic process in converting plant-sourced substances into essential materials that can be used instead of fossil fuels.

Chakrabarti and Hunt were originally named regional winners in this year's competition this summer along with nine other Houston entrepreneurs.

Founded in 2016 by Hunt and Gaurab Chakrabarti, Solugen has raised over $600 million from investors like Sasol that believe in the technology's potential. The company is valued at reportedly over $2 billion. Solugen is headquartered in Houston, not because it is the hometown of Chakrabarti, but for what Houston brings to the company.

“There’s no way our business could succeed in the Bay Area," Chakrabarti said in a 2023 interview at SXSW where he detailed the offers Hunt and he received to move the business out of state. “For our business, if you look at the density of chemical engineers, the density of our potential customers, and the density of people who know how to do enzyme engineering, Houston happened to be that perfect trifecta for us.”

Even though they are headquartered in Houston, Solugen recently secured plans to expand to the Midwest, as in November they announced its newest strategic partnership with sustainable solutions company ADM (NYSE:ADM) in Marshall, Minnesota. The partnership includes plans for Solugen to build a 500,000-square-foot biomanufacturing facility next to an existing ADM facility , with the two companies working together on producing biomaterials to replace fossil fuel products.

“The strategic partnership with ADM will allow Solugen to bring our chemienzymatic process to a commercial scale and meet existing customer demand for our high-performance, cost-competitive, sustainable products,” Chakrabarti said in a news release. “As one of the few scaled-up and de-risked biomanufacturing assets in the country, Solugen’s Bioforge platform is helping bolster domestic capabilities and supply chains that are critical in ensuring the U.S. reaches its ambitious climate targets.”

For Chakrabarti and Hunt, Solugen was born out of a 12-year friendship, and the journey began after a friendly card game. After an entrepreneurship contest at MIT, which earned them second place and a $10,000 prize, they invested the winnings to work on what would become Solugen, a proof-of-concept reactor with materials bought from a local home improvement store.

"We had a conviction that we were building something that could be impactful to the rest of the world,” Chakrabarti said at SXSW in 2023.

———

This article originally ran on InnovationMap.

Houston-based Solugen will build a 500,000-square-foot biomanufacturing facility in the Midwest thanks to a new strategic partnership.

Houston-based sustainable chemicals co. to build ​Midwest biomanufacturing facility

it's corn

Solugen has scored a partnership with a global company to build a biomanufacturing facility adjacent to an existing corn complex in Marshall, Minnesota.

Solugen, a Houston company that's designed a process that converts plant-derived substances into essential materials, has announced its newest strategic partnership with sustainable solutions company ADM (NYSE:ADM). The partnership includes plans for Solugen to build a 500,000-square-foot biomanufacturing facility next to an existing ADM facility in the Midwest. The two companies will collaborate on producing biomaterials to replace fossil fuel-based products.

“The strategic partnership with ADM will allow Solugen to bring our chemienzymatic process to a commercial scale and meet existing customer demand for our high-performance, cost-competitive, sustainable products,” Gaurab Chakrabarti, co-founder and CEO of Solugen, says in a news release. “As one of the few scaled-up and de-risked biomanufacturing assets in the country, Solugen’s Bioforge platform is helping bolster domestic capabilities and supply chains that are critical in ensuring the U.S. reaches its ambitious climate targets.”

The company plans to begin on-site construction early next year, with plans to startup in the first half of 2025. The project should create at least 40 permanent jobs and 100 temporary construction positions.

“Sustainability is one of the enduring global trends powering ADM’s growth and underpinning the strategic evolution of our Carbohydrate Solutions business,” Chris Cuddy, president of ADM’s Carbohydrate Solutions business, says in the release. “ADM is one of the largest dextrose producers in the world, and this strategic partnership will allow us to further diversify our product stream as we continue to support plant-based solutions spanning sustainable packaging, pharma, plant health, construction, fermentation, and home and personal care.”

Founded in 2016 by Chakrabarti and Sean Hunt, Solugen's carbon-negative molecule factory, named the Bioforge, uses its chemienzymatic process in converting plant-sourced substances into essential materials that can be used instead of fossil fuels. The manufacturing process is carbon neutral, and Solugen has raised over $600 million from investors that believe in the technology's potential.

“The initial phase of the project will significantly increase Solugen’s manufacturing capacity, which is critical for commercializing our existing line of molecules and kicks off plans for a multi-phase large-scale U.S. Bioforge buildout,” Hunt, CTO of Solugen, says in the release. “The increase in capacity will also free up our Houston operation for research and development efforts into additional molecules and market applications.”

The project should create at least 40 permanent jobs and 100 temporary construction positions.

"As a community with a strong foundation of agriculture and innovation, we look forward to welcoming Solugen to Marshall. This industry-leading facility will serve as a powerful economic driver for the city, creating new jobs and diversifying our industry,” City of Marshall Mayor Bob Byrnes says in the statement. "We are thankful for ADM’s longstanding commitment and impact to Marshall, which has paved the way for this remarkable partnership and continues to further economic growth to our region."

It's the second major company partnership announcement Solugen has made this month, with a new arrangement with Sasol being secured last week.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH's $44 million mass timber building slashed energy use in first year

building up

The University of Houston recently completed assessments on year one of the first mass timber project on campus, and the results show it has had a major impact.

Known as the Retail, Auxiliary, and Dining Center, or RAD Center, the $44 million building showed an 84 percent reduction in predicted energy use intensity, a measure of how much energy a building uses relative to its size, compared to similar buildings. Its Global Warming Potential rating, a ratio determined by the Intergovernmental Panel on Climate Change, shows a 39 percent reduction compared to the benchmark for other buildings of its type.

In comparison to similar structures, the RAD Center saved the equivalent of taking 472 gasoline-powered cars driven for one year off the road, according to architecture firm Perkins & Will.

The RAD Center was created in alignment with the AIA 2030 Commitment to carbon-neutral buildings, designed by Perkins & Will and constructed by Houston-based general contractor Turner Construction.

Perkins & Will’s work reduced the building's carbon footprint by incorporating lighter mass timber structural systems, which allowed the RAD Center to reuse the foundation, columns and beams of the building it replaced. Reused elements account for 45 percent of the RAD Center’s total mass, according to Perkins & Will.

Mass timber is considered a sustainable alternative to steel and concrete construction. The RAD Center, a 41,000-square-foot development, replaced the once popular Satellite, which was a food, retail and hangout center for students on UH’s campus near the Science & Research Building 2 and the Jack J. Valenti School of Communication.

The RAD Center uses more than a million pounds of timber, which can store over 650 metric tons of CO2. Aesthetically, the building complements the surrounding campus woodlands and offers students a view both inside and out.

“Spaces are designed to create a sense of serenity and calm in an ecologically-minded environment,” Diego Rozo, a senior project manager and associate principal at Perkins & Will, said in a news release. “They were conceptually inspired by the notion of ‘unleashing the senses’ – the design celebrating different sights, sounds, smells and tastes alongside the tactile nature of the timber.”

In addition to its mass timber design, the building was also part of an Energy Use Intensity (EUI) reduction effort. It features high-performance insulation and barriers, natural light to illuminate a building's interior, efficient indoor lighting fixtures, and optimized equipment, including HVAC systems.

The RAD Center officially opened Phase I in Spring 2024. The third and final phase of construction is scheduled for this summer, with a planned opening set for the fall.

Experts on U.S. energy infrastructure, sustainability, and the future of data

Guest column

Digital infrastructure is the dominant theme in energy and infrastructure, real estate and technology markets.

Data, the byproduct and primary value generated by digital infrastructure, is referred to as “the fifth utility,” along with water, gas, electricity and telecommunications. Data is created, aggregated, stored, transmitted, shared, traded and sold. Data requires data centers. Data centers require energy. The United States is home to approximately 40% of the world's data centers. The U.S. is set to lead the world in digital infrastructure advancement and has an opportunity to lead on energy for a very long time.

Data centers consume vast amounts of electricity due to their computational and cooling requirements. According to the United States Department of Energy, data centers consume “10 to 50 times the energy per floor space of a typical commercial office building.” Lawrence Berkeley National Laboratory issued a report in December 2024 stating that U.S. data center energy use reached 176 TWh by 2023, “representing 4.4% of total U.S. electricity consumption.” This percentage will increase significantly with near-term investment into high performance computing (HPC) and artificial intelligence (AI). The markets recognize the need for digital infrastructure build-out and, developers, engineers, investors and asset owners are responding at an incredible clip.

However, the energy demands required to meet this digital load growth pose significant challenges to the U.S. power grid. Reliability and cost-efficiency have been, and will continue to be, two non-negotiable priorities of the legal, regulatory and quasi-regulatory regime overlaying the U.S. power grid.

Maintaining and improving reliability requires physical solutions. The grid must be perfectly balanced, with neither too little nor too much electricity at any given time. Specifically, new-build, physical power generation and transmission (a topic worthy of another article) projects must be built. To be sure, innovative financial products such as virtual power purchase agreements (VPPAs), hedges, environmental attributes, and other offtake strategies have been, and will continue to be, critical to growing the U.S. renewable energy markets and facilitating the energy transition, but the U.S. electrical grid needs to generate and move significantly more electrons to support the digital infrastructure transformation.

But there is now a third permanent priority: sustainability. New power generation over the next decade will include a mix of solar (large and small scale, offsite and onsite), wind and natural gas resources, with existing nuclear power, hydro, biomass, and geothermal remaining important in their respective regions.

Solar, in particular, will grow as a percentage of U.S grid generation. The Solar Energy Industries Association (SEIA) reported that solar added 50 gigawatts of new capacity to the U.S. grid in 2024, “the largest single year of new capacity added to the grid by an energy technology in over two decades.” Solar is leading, as it can be flexibly sized and sited.

Under-utilized technology such as carbon capture, utilization and storage (CCUS) will become more prominent. Hydrogen may be a potential game-changer in the medium-to-long-term. Further, a nuclear power renaissance (conventional and small modular reactor (SMR) technologies) appears to be real, with recent commitments from some of the largest companies in the world, led by technology companies. Nuclear is poised to be a part of a “net-zero” future in the United States, also in the medium-to-long term.

The transition from fossil fuels to zero carbon renewable energy is well on its way – this is undeniable – and will continue, regardless of U.S. political and market cycles. Along with reliability and cost efficiency, sustainability has become a permanent third leg of the U.S. power grid stool.

Sustainability is now non-negotiable. Corporate renewable and low carbon energy procurement is strong. State renewable portfolio standards (RPS) and clean energy standards (CES) have established aggressive goals. Domestic manufacturing of the equipment deployed in the U.S. is growing meaningfully and in politically diverse regions of the country. Solar, wind and batteries are increasing less expensive. But, perhaps more importantly, the grid needs as much renewable and low carbon power generation as possible - not in lieu of gas generation, but as an increasingly growing pairing with gas and other technologies. This is not an “R” or “D” issue (as we say in Washington), and it's not an “either, or” issue, it's good business and a physical necessity.

As a result, solar, wind and battery storage deployment, in particular, will continue to accelerate in the U.S. These clean technologies will inevitably become more efficient as the buildout in the U.S. increases, investments continue and technology advances.

At some point in the future (it won’t be in the 2020s, it could be in the 2030s, but, more realistically, in the 2040s), the U.S. will have achieved the remarkable – a truly modern (if not entirely overhauled) grid dependent largely on a mix of zero and low carbon power generation and storage technology. And when this happens, it will have been due in large part to the clean technology deployment and advances over the next 10 to 15 years resulting from the current digital infrastructure boom.

---

Hans Dyke and Gabbie Hindera are lawyers at Bracewell. Dyke's experience includes transactions in the electric power and oil and gas midstream space, as well as transactions involving energy intensive industries such as data storage. Hindera focuses on mergers and acquisitions, joint ventures, and public and private capital market offerings.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

new findings

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.