Gaurab Chakrabarti and Sean Hunt were originally named regional winners in this year's competition this summer along with nine other Houston entrepreneurs. Photos via solugen.com

Houston’s Gaurab Chakrabarti and Sean Hunt, the founders of the transformative chemical manufacturing company Solugen, have been named EY’s US National Award winners for Entrepreneur of the Year.

Solugen, also recently named a finalist in the 2023 Houston Innovation Awards, is an environmentally friendly approach that relies on smaller chemical refineries that helps in reducing costs and transportation-related emissions.

Some of their noted accomplishments includes innovations like the proprietary reactor, dubbed the Bioforge, which is a carbon-negative molecule factory and manufacturing process produces zero wastewater or emissions compared with traditional petrochemical refineries.The Bioforge uses a chemienzymatic process in converting plant-sourced substances into essential materials that can be used instead of fossil fuels.

Chakrabarti and Hunt were originally named regional winners in this year's competition this summer along with nine other Houston entrepreneurs.

Founded in 2016 by Hunt and Gaurab Chakrabarti, Solugen has raised over $600 million from investors like Sasol that believe in the technology's potential. The company is valued at reportedly over $2 billion. Solugen is headquartered in Houston, not because it is the hometown of Chakrabarti, but for what Houston brings to the company.

“There’s no way our business could succeed in the Bay Area," Chakrabarti said in a 2023 interview at SXSW where he detailed the offers Hunt and he received to move the business out of state. “For our business, if you look at the density of chemical engineers, the density of our potential customers, and the density of people who know how to do enzyme engineering, Houston happened to be that perfect trifecta for us.”

Even though they are headquartered in Houston, Solugen recently secured plans to expand to the Midwest, as in November they announced its newest strategic partnership with sustainable solutions company ADM (NYSE:ADM) in Marshall, Minnesota. The partnership includes plans for Solugen to build a 500,000-square-foot biomanufacturing facility next to an existing ADM facility , with the two companies working together on producing biomaterials to replace fossil fuel products.

“The strategic partnership with ADM will allow Solugen to bring our chemienzymatic process to a commercial scale and meet existing customer demand for our high-performance, cost-competitive, sustainable products,” Chakrabarti said in a news release. “As one of the few scaled-up and de-risked biomanufacturing assets in the country, Solugen’s Bioforge platform is helping bolster domestic capabilities and supply chains that are critical in ensuring the U.S. reaches its ambitious climate targets.”

For Chakrabarti and Hunt, Solugen was born out of a 12-year friendship, and the journey began after a friendly card game. After an entrepreneurship contest at MIT, which earned them second place and a $10,000 prize, they invested the winnings to work on what would become Solugen, a proof-of-concept reactor with materials bought from a local home improvement store.

"We had a conviction that we were building something that could be impactful to the rest of the world,” Chakrabarti said at SXSW in 2023.

———

This article originally ran on InnovationMap.

Houston-based Solugen will build a 500,000-square-foot biomanufacturing facility in the Midwest thanks to a new strategic partnership.

Houston-based sustainable chemicals co. to build ​Midwest biomanufacturing facility

it's corn

Solugen has scored a partnership with a global company to build a biomanufacturing facility adjacent to an existing corn complex in Marshall, Minnesota.

Solugen, a Houston company that's designed a process that converts plant-derived substances into essential materials, has announced its newest strategic partnership with sustainable solutions company ADM (NYSE:ADM). The partnership includes plans for Solugen to build a 500,000-square-foot biomanufacturing facility next to an existing ADM facility in the Midwest. The two companies will collaborate on producing biomaterials to replace fossil fuel-based products.

“The strategic partnership with ADM will allow Solugen to bring our chemienzymatic process to a commercial scale and meet existing customer demand for our high-performance, cost-competitive, sustainable products,” Gaurab Chakrabarti, co-founder and CEO of Solugen, says in a news release. “As one of the few scaled-up and de-risked biomanufacturing assets in the country, Solugen’s Bioforge platform is helping bolster domestic capabilities and supply chains that are critical in ensuring the U.S. reaches its ambitious climate targets.”

The company plans to begin on-site construction early next year, with plans to startup in the first half of 2025. The project should create at least 40 permanent jobs and 100 temporary construction positions.

“Sustainability is one of the enduring global trends powering ADM’s growth and underpinning the strategic evolution of our Carbohydrate Solutions business,” Chris Cuddy, president of ADM’s Carbohydrate Solutions business, says in the release. “ADM is one of the largest dextrose producers in the world, and this strategic partnership will allow us to further diversify our product stream as we continue to support plant-based solutions spanning sustainable packaging, pharma, plant health, construction, fermentation, and home and personal care.”

Founded in 2016 by Chakrabarti and Sean Hunt, Solugen's carbon-negative molecule factory, named the Bioforge, uses its chemienzymatic process in converting plant-sourced substances into essential materials that can be used instead of fossil fuels. The manufacturing process is carbon neutral, and Solugen has raised over $600 million from investors that believe in the technology's potential.

“The initial phase of the project will significantly increase Solugen’s manufacturing capacity, which is critical for commercializing our existing line of molecules and kicks off plans for a multi-phase large-scale U.S. Bioforge buildout,” Hunt, CTO of Solugen, says in the release. “The increase in capacity will also free up our Houston operation for research and development efforts into additional molecules and market applications.”

The project should create at least 40 permanent jobs and 100 temporary construction positions.

"As a community with a strong foundation of agriculture and innovation, we look forward to welcoming Solugen to Marshall. This industry-leading facility will serve as a powerful economic driver for the city, creating new jobs and diversifying our industry,” City of Marshall Mayor Bob Byrnes says in the statement. "We are thankful for ADM’s longstanding commitment and impact to Marshall, which has paved the way for this remarkable partnership and continues to further economic growth to our region."

It's the second major company partnership announcement Solugen has made this month, with a new arrangement with Sasol being secured last week.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.