The strong performance changed the trajectory of the year for the Austin, Texas-based company, which had seen sales and profits decline in the first two quarters. Photo courtesy of Tesla

Tesla’s third-quarter net income rose 17.3 percent compared with a year ago on stronger electric vehicle sales, and an optimistic CEO Elon Musk predicted 20 percent to 30 percent sales growth next year.

The strong performance changed the trajectory of the year for the Austin, Texas-based company, which had seen sales and profits decline in the first two quarters.

In its letter to investors, Tesla predicted slight growth in vehicle deliveries this year, better than the 1.8 million delivered worldwide in 2023.

Tesla said Wednesday that it made $2.17 billion from July through September, more than the $1.85 billion profit it posted in the same period of 2023.

The earnings came despite price cuts and low-interest financing that helped boost sales of the company’s aging vehicle lineup during the quarter. It was Tesla’s first year-over-year quarterly profit increase of 2024, a year plagued by falling sales and prices.

Revenue in the quarter rose 7.8 percent to $25.18 billion, falling short of Wall Street analysts who estimated it at $25.47 billion, according to FactSet. Tesla made an adjusted 72 cents per share, soundly beating analyst expectations of 59 cents.

Shares in Tesla Inc. soared nearly 12 percent in trading after Wednesday’s closing bell.

On a conference call with analysts, Musk said the profit increase came despite a challenging environment for auto sales with still-high loan interest rates. “I think if you look at EV companies worldwide, to the best of my knowledge, no EV company is even profitable,” he said.

Musk qualified his prediction that Tesla would post 2025 vehicle sales growth of 20 percent to 30 percent by saying it could be changed by “negative external events.”

Earlier this month Tesla said it sold 462,890 vehicles from July through September, up 6.4 percent from a year ago. The sales numbers were better than analysts had expected.

The letter said that Tesla is on track to start production of new vehicles, including more affordable models, in the first half of next year, something investors had been looking for. The new vehicles will use parts from its current models and will be made on the same assembly lines as Tesla’s current model lineup, the letter said.

The new vehicles were not identified and the price was nebulous. Musk has said in the past the company is working on a car that will cost about $25,000, but said Wednesday that a new affordable vehicle would cost under $30,000 including government tax incentives.

Earlier this month, the company showed off a purpose-built two-seat robotaxi called “Cybercab” at a glitzy event at a Hollywood movie studio. Musk said it would be in production before 2027 and cost around $25,000.

By using parts from existing models and the current manufacturing system, Tesla won’t reach cost reductions that it previously expected using a new manufacturing setup.

Tesla said it reduced the cost of goods per vehicle to its lowest level yet, about $35,100.

The company’s widely watched gross profit margin, the percentage of revenue it gets to keep after expenses, rose to 19.8 percent, the highest in a year, but still smaller than the peak of 29.1 percent in the first quarter of 2022.

During the quarter, Tesla’s revenue from regulatory credits purchased by other automakers who can’t meet government emissions targets hit $739 million, the second highest quarter in company history.

Musk said Tesla's “Full Self-Driving” system is improving and would drive more safely than humans in the second quarter of next year. Despite the name, Teslas using “Full Self-Driving” cannot drive themselves, and human drivers must be ready to intervene at all times.

The company, he said, is offering an autonomous ride-hailing service to employees in the San Francisco Bay Area, but it currently has human safety drivers. It expects to start a robotaxi service for the public in California and Texas next year, he said.

Musk also conceded that it may not be possible to reach autonomous driving safety levels with older editions of “Full Self-Driving” hardware. If it can't do that, Tesla will upgrade computers in the older cars for free, he said.

The self-driving claims come just five days after U.S. safety regulators opened an investigation into the system's cameras to see in low-visibility conditions such as sun glare, fog and airborne dust. The probe raised doubts about whether the system will be ready to drive on its own next year.

The National Highway Traffic Safety Administration said in documents posted Friday that it opened the probe of 2.4 million Teslas after the company reported four crashes in low visibility conditions. In one, a woman who stopped to help after a crash on an Arizona freeway was struck and killed by a Tesla.

Investigators will look into the ability of “Full Self-Driving” to “detect and respond appropriately to reduced roadway visibility conditions."

Edward Jones analyst Jeff Windau said the earnings report and conference call showed that Tesla is making money on software, a business with high profit margins.

Still, he has a “hold” rating on the stock as the company moves toward robotics and autonomous vehicles. “They’ve got a lot of challenging goals out there,” he said.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.