Andrew Chang, managing director of United Airlines Ventures, says it's his job to accelerate the airline's mission to decarbonize operations. Photo via LinkedIn

While someone might not immediately make the connection between aviation and the energy transition, United Airlines understands the importance of more sustainable fuel — and has put its money where its mouth is.

According to an International Energy Agency report, the aviation accounted for 2 percent of global energy-related CO2 emissions last year. Earlier this year, United Airlines launched a fund that called for collaboration across the industry.

After only five months, the United Airlines Ventures Sustainable Flight Fund SM increased to nearly $200 million and added new financial partners, airlines, and more. The fund takes on funding from its 13 limited partners and exists separately from United's core business operations.

Andrew Chang, managing director of United Airlines Ventures, says it's his job to accelerate the airline's mission to decarbonize operations. He explains that working together on the fund is the key for advancing sustainable aviation fuel, or SAF.

"We all recognize that we may compete in our core business, but with the importance of sustainable aviation fuel and given that it's an industry that doesn't exist — you can't compete for something that doesn't exist — let's collaborate and work together to explore technologies that can directly or indirectly support the commercialization and production of sustainable aviation fuel," he says on the Houston Innovators Podcast.

United Airlines also recently signed an offtake agreement with Cemvita Factory, a Houston biotech startup that's working on SAF. Chang discusses this partnership on the show, as well as explaining how he works with other startups and what he's looking for.

The offtake agreement and the fund are just two examples of how United is building to a more sustainable future. As Chang explains on the show, the aviation industry hasn't evolved too much over the past three or four decades.

"It's been a challenging market," he says, blaming the ever-evolving macroeconomic conditions for providing challenges for the airline, taking away its focus from new technologies. "But I think we are at a point where the industry is in a healthier place, the sector has consolidated, we are supported by our consumers, and we are now empowered with the financial and strategic capital to think ahead."

———

This article originally ran on InnovationMap.

The Houston energy transition ecosystem is primed for collaborative partnerships – but here's what to keep in mind. Photo courtesy of Digital Wildcatters

Addressing the need for collaboration in Houston's energy transition

Editor's note

When it comes to advancing the energy transition in Houston and beyond, experts seem to agree that collaborations between all major stakeholders is extremely important.

In fact, it was so important that it was the first panel of the second day of FUZE, an energy-focused conference put on by Digital Wildcatters. EnergyCapital HTX and InnovationMap were the event's media partners, and I, as editor of these news outlets, moderated the panel about collaborations.

I wanted to take a second to reflect on the conversation I had with the panelists earlier this week, as I believe their input and expertise — from corporate and nonprofit to startup and investing — was extremely valuable to the greater energy transition community.

Here were my three takeaways from the panel, titled "Collaborative Partnerships: Leveraging synergy in the energy sector."

Early-stage tech startups need bridges to cross their valleys.

The energy transition is a long game — and an expensive one, as Jane Stricker, executive director of the Houston Energy Transition Initiative, explains on the panel. And, just like most startups, the path to commercialization and profitability is long — and definitely not promised.

"When you look at innovation and startups, the multiple valleys of death a startup will go through on their journey, we have to find more ways to bridge those valleys and get more technology to get up that mountain and to a place where it can be scaled," she says.

She explains that corporations aren't always good at innovating, but they are impactful about rolling out de-risked technology at a global scale. But the technology has to get to that point first, so it takes a much earlier intervention for corporates — or another entity, like incubators and accelerators — to help in that developmental process.

"In Houston we have the potential to build out that ecosystem — we already have a lot of pieces in place, so it's about connecting the dots," Stricker says. "It's only by all of the different parts of the ecosystem understanding what each other does and what unique role they play in the process that we can really leverage the strengths of each of them to help create those partnerships and opportunities."

As Amy Henry, CEO of EUNIKE Ventures explains, corporates have their own challenges.

"Energy companies themselves have their own valley of death, and from where they are sitting, that's why they need to collaborate," she says on the panel. "And now we're talking about an unprecedented rate of getting technology commercialized."

EUNIKE works as a go between for corporates — almost as an expansion for them, Henry explains, and they are facing a challenging time too.

"Energy companies are just not early adopters of technology," she says. "But they are also going through their own transformation. At the same time, you've had this huge knowledge leakage in terms of all the workforce reduction."

Startups and corporates speak a different language.

Moji Karimi has had several partnerships with corporations with his biotech startup Cemvita Factory, including a recent offtake agreement with United. For Karimi, it's about learning about your corporate partner.

"In partnerships, especially for startups, you need to understand what is the language of love for the company at time," he says on the panel. "Is it growth, is it perception and PR, is it deployment of capital, or is there a specific bottleneck that we can help remove."

For HETI, Striker says they hope to act as a translator between the two parties.

"How do we enable more connectivity between the companies that have a technology that may be of interest to the larger companies looking for a solution?" Striker explains of HETI's mission. "And how do we make sure industry is communicating opening and broadly?"

Now is the time for action.

For Karimi, the solution is simple: More action is needed.

"Generally, we just need to talk less and do more," he says of what he wants to see from corporates, adding that more checks need to be written.

Based on his own experience, Karimi says some corporates are better to work with than others. He says he prefers working with the companies that don't try to mix in their startup pilots with the "bread and butter" of the business.

"Everyone has so much on their plate," he says, giving the example of Oxy Low Carbon Ventures being an offshoot of Oxy's main business.

Karimi says corporates should think of their startup pilots as an opportunity to try something new and different — something they'd never be able to test internally.

David Maher, business development director of Americas at Linde, says now that there's been regulatory framework, Linde knows what to invest in. The company has a particular interest in hydrogen.

"Another big piece of it is scale," Maher says of what Linde thinks about when considering innovative partnerships. "What's great about Houston is we have density and scale already."

United Airlines is interested in buying Cemvita's sustainable aviation fuel when it's produced. Photo courtesy of Cemvita

United Airlines signs offtake arrangement with Houston startup for sustainable fuel production

green fuel incoming

An innovative Houston company is celebrating a new deal with a global airline.

Cemvita Corp. announced a new offtake arrangement with United Airlines. Cemvita's first full-scale sustainable aviation fuel plant will provide up to 1 billion gallons of SAF to United Airlines. The 20-year contract specifies that Cemvita will supply up to 50 million gallons annually to United.

It's not the first collaboration Cemvita has had with the airline. Last year, United invested in the biotech company, which used the funding to open its Houston pilot plant.

“Since our initial investment last year, Cemvita has made outstanding progress, including opening their new pilot plant – an important step towards producing sustainable aviation fuel,” United Airlines Ventures President Michael Leskinen says in a news release. “United is the global aviation leader in SAF production investment, but we face a real shortage of available fuel and producers. Cemvita’s technology represents a path forward for a potentially significant supply of SAF and it’s our hope that this offtake agreement for up to one billion gallons is just the beginning of our collaboration.”

Founded in Houston in 2017 by brother-sister team Moji and Tara Karimi, Cemvita's biotechnology can mimic the photosynthesis process, turning carbon dioxide into feedstock. The company's SAF plan hopes to increase reliability of existing SAFs and lower impact of fuel creation.

“Biology is capable of truly amazing things,” Moji Karimi, CEO of Cemvita, says in the release. “Our team of passionate, pioneering, and persistent scientists and engineers are on a mission to create sustainable BioSolutions that redefine possibilities.”

“We are thrilled to partner with United Airlines in working towards transforming the aviation industry and accelerating the energy transition,” he continues. “This agreement featuring our unique SAF platform is a major milestone towards demonstrating our journey to full commercialization.”

Earlier this year, United, which was reportedly the first airline to announce its goal of net zero carbon emissions by 2050, launched its UAV Sustainable Flight FundSM. The fund, which named Cemvita to its inaugural group of portfolio companies, has raised over $200 million, as of this summer.

Moji and Tara Karimi co-founded Cemvita in 2017. Photo courtesy of Cemvita

At a recent SXSW panel, four Houston energy experts discussed the importance of research, commercialization, and more in Houston to drive the energy transition. Photo via Getty Images

Experts address Houston's energy transition role — from research to commercialization

HOUSTON @ SXSW

Every part of the energy industry is going to have a role in the energy transition — from the universities where the research and development is happening to the startups and the incumbent industry leaders, as a recent SXSW panel discussed.

“We are well known in Houston for being the energy capital of the world," Jane Stricker, executive director of the Houston Energy Transition Initiative, says as moderator of the panel. "The industry typically comes together with stakeholders to think about the solutions and how to solve this dual challenge of continuing to provide more energy to the world but doing it in a way that significantly reduces emissions at the same time.”

The panel, entitled "Ground Zero: Creating Pathways from Research to Scale Deployment," was put on by HETI, an organization under the Greater Houston Partnership, and took place Sunday, March 12, in Austin at SXSW.

“I often say that I believe Houston is ground zero for the transition because we have this unique combination of assets, infrastructure, innovation, research at universities, and a collective understanding of the importance of energy to people’s lives that allows us to tackle this problem in new ways," she continues.

Sticker was joined by Paul Cherukuri, vice president for innovation at Rice University; Juliana Garaizar, chief development and investment officer at Greentown Labs; and Tara Karimi, co-founder and CTO of Cemvita Factory. The panel highlighted the challenges facing Houston as it promises to lead the energy transition.

For Cherukuri, whose innovation-focused position was newly created when he was appointed to it last August, it's a pivotal moment for research institutions.

"It's really an exciting time in Houston because universities are changing," says Cherukuri. "Rice University itself is changing in dramatic ways, and it's a great opportunity to really plug into the energy transition inside of Houston."

The role he plays, as he explains, is to connect Rice innovators to the rest of the city and the world.

"We have to partner through the accelerators as well as with with companies who can catch what we've made and take it to scale," he continues. "That's uniquely something that we can do in Houston. It's not something that a lot of cities can do."

Representing the scaling efforts is Greentown Labs, and Garaizar explains how the Massachusetts-based organization, which has its second outpost in Houston, connects its member companies to corporate partners that can become funders, pilot partners, customers, and more. But scaling can only be accomplished with the right technologies and the proper funding behind them.

"Sixty percent of the technologies that are going to be used to decarbonize the world haven't yet been invented," she says on the panel. "So, there's a huge pull for technology right now. And we see people who are only on the private equity space now finally invested in a lot of earlier series like series A, but there's still some road to to be made there."

Houston-based Cemvita Factory is in the scale phase, and Karimi explains how she's actively working with companies to apply the company's unique biotechnology to convert CO2 to natural resources to accommodate each customer's needs. Cemvita is on the front lines of interacting with incumbent energy businesses that play a major role in the future of energy.

"The way we communicate with energy companies, we tell them that us to be the innovation arm for you and we work together," Karimi says. "I think it's everybody needs to understand it's a transition. There is no way to just change the way that chemicals are produced just immediately and replace it with something new. It's a transition that needs both aspects."

------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”

Expert examines how far Texas has come in energy efficiency

Guest Column

Texas leads the nation in energy production, providing about one-fourth of the country’s domestically produced primary energy. It is also the largest energy-consuming state, accounting for about one-seventh of the nation’s total energy use, and ranks sixth among the states in per capita energy consumption.

However, because Texas produces significantly more energy than it consumes, it stands as the nation’s largest net energy supplier. October marked National Energy Awareness Month, so this is an ideal time to reflect on how far Texas has come in improving energy efficiency.

Progress in Clean Energy and Grid Resilience

Texas continues to lead the nation in clean energy adoption and grid modernization, particularly in wind and solar power. With over 39,000 MW of wind capacity, Texas ranks first in the country in wind-powered electricity generation, now supplying more than 10% of the state’s total electricity.

This growth was significantly driven by the Renewable Portfolio Standard (RPS), which requires utility companies to produce new renewable energy in proportion to their market share. Initially, the RPS aimed to generate 10,000 MW of renewable energy capacity by 2025. Thanks to aggressive capacity building, this ambitious target was reached much earlier than anticipated.

Solar energy is also expanding rapidly, with Texas reaching 16 GW of solar capacity as of April 2024. The state has invested heavily in large-scale solar farms and supportive policies, contributing to a cleaner energy mix.

Texas is working to integrate both wind and solar to create a more resilient and cost-effective grid. Efforts to strengthen the grid also include regulatory changes, winterization mandates, and the deployment of renewable storage solutions.

While progress is evident, experts stress the need for continued improvements to ensure grid reliability during extreme weather events, when we can’t rely on the necessities for these types of energy sources to thrive. To put it simply, the sun doesn’t always shine, and the wind doesn’t always blow.

Federal Funding Boosts Energy Efficiency

In 2024, Texas received $22.4 million, the largest share of a $66 million federal award, from the U.S. Department of Energy’s Energy Efficiency Revolving Loan Fund Capitalization Grant Program.

The goal of this funding is to channel federal dollars into local communities to support energy-efficiency projects through state-based loans and grants. According to the DOE, these funds can be used by local businesses, homeowners, and public institutions for energy audits, upgrades, and retrofits that reduce energy consumption.

The award will help establish a new Texas-based revolving loan fund modeled after the state’s existing LoanSTAR program, which already supports cost-effective energy retrofits for public facilities and municipalities. According to the Texas Comptroller, as of 2023, the LoanSTAR program had awarded more than 337 loans totaling over $600 million.

In addition to expanding the revolving loan model, the state plans to use a portion of the DOE funds to offer free energy audit services to the public. The grant program is currently under development.

Building on this momentum, in early 2025, Texas secured an additional $689 million in federal funding to implement the Home Energy Performance-Based, Whole House (HOMES) rebate program and the Home Electrification and Application Rebate (HEAR) program.

This investment is more than five times the state’s usual energy efficiency spending. Texas’s eight private Transmission and Distribution Utilities typically spend about $110 million annually on such measures. The state will have multiple years to roll out both the revolving loan and rebate programs.

However, valuable federal tax incentives for energy-efficient home improvements are set to expire on December 31, 2025, including:

  • The Energy Efficiency Home Improvement Credit allows homeowners to claim up to $3,200 per year in federal income tax credits, covering 30% of the cost of eligible upgrades, such as insulation, windows, doors, and high-efficiency heating and cooling systems.
  • The Residential Clean Energy Credit provides a 30% income tax credit for the installation of qualifying clean energy systems, including rooftop solar panels, wind turbines, geothermal heat pumps, and battery storage systems.

As these incentives wind down, the urgency grows for Texas to build on the positive gains from the past several years despite reduced federal funding. The state has already made remarkable strides in clean energy production, grid modernization, and energy-efficiency investments, but the path forward requires a strategic and inclusive approach to energy planning. Through ongoing state-federal collaboration, community-driven initiatives, and forward-looking policy reforms, Texas can continue its progress, ensuring that future energy challenges are met with sustainable and resilient solutions.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Meta to buy all power from new ENGIE Texas solar farm

power purchase

Meta, the parent company of social media platform Facebook, has agreed to buy all of the power from a $900 million solar farm being developed near Abilene by Houston-based energy company ENGIE North America.

The 600-megawatt Swenson Ranch solar farm, located in Stonewall County, will be the largest one ever built in the U.S. by ENGIE. The solar farm is expected to go online in 2027.

Meta will use electricity generated by the solar farm to power its U.S. data centers. All told, Meta has agreed to purchase more than 1.3 gigawatts of renewable energy from four ENGIE projects in Texas.

“This project marks an important step forward in the partnership between our two companies and their shared desire to promote a sustainable and competitive energy model,” Paulo Almirante, ENGIE’s senior executive vice president of renewable and flexible power, said in a news release.

In September, ENGIE North America said it would collaborate with Prometheus Hyperscale, a developer of sustainable liquid-cooled data centers, to build data centers at ENGIE-owned renewable energy and battery storage facilities along the I-35 corridor in Texas. The corridor includes Austin, Dallas-Fort Worth, San Antonio and Waco.

The first projects under the ENGIE-Prometheus umbrella are expected to go online in 2026.

ENGIE and Prometheus said their partnership “brings together ENGIE's deep expertise in renewables, batteries, and energy management and Prometheus' highly efficient liquid-cooled data center design to meet the growing demand for reliable, sustainable compute capacity — particularly for AI and other high-performance workloads.”