Bill Gates says companies like Fervo push the geothermal technology 'to new depths.' Photo via fervoenergy.com

In a new blog post spotlighting Houston-based geothermal power startup Fervo Energy, billionaire Bill Gates — a Fervo investor — predicts geothermal will eventually supply up to 20 percent of the world’s electricity, up from his previous estimate of as much as 5 percent.

Today, geothermal accounts for less than 1 percent of electricity generated around the world, according to the International Energy Agency. The agency forecasts geothermal will represent up to 15 percent of global power by 2050.

“Geothermal power will have a big role to play in our clean energy future, and it’s exciting to see companies like Fervo push the technology to new depths,” Gates wrote.

Gates’ more than $1 billion Breakthrough Energy Ventures fund has contributed to the $982 million pool of money that Fervo has raised since its founding in 2017. Fervo is now a unicorn, meaning its valuation as a private company exceeds $1 billion. Its valuation has been estimated at $1.4 billion.

The Microsoft billionaire published the blog post on his Gates Notes website after touring the site of Fervo’s Cape Station geothermal project, which is under construction in Utah. Fervo says Cape Station will be the world’s largest geothermal plant, capable of someday producing up to 2 gigawatts of power.

Earlier this year, Fervo raised $206 million to put toward the development of Cape Station. Of that amount, $100 million came from Breakthrough Energy Catalyst, a green tech investment program backed by Gates, according to Inc.com.

The first phase of Cape Station is scheduled to be completed in 2026, with first-year power generation pegged at 100 megawatts. An additional 500 megawatts of power-producing capacity is slated to go online in 2028.

“Geothermal is one of the most promising ways to deliver clean energy that’s reliable and affordable,” Gates wrote.

In the blog post, Gates praised the simplicity of geothermal energy.

“The interior of the Earth is incredibly hot, and the deeper you go, the hotter the ground becomes,” he explained. “If you pump fluid deep enough to be warmed by this heat and then pump it back to the surface, you can turn the hot liquid into steam and use it to spin turbines and generate electricity — just like many other types of power plants.”

Gates noted that horizontal drilling is one of Fervo’s biggest innovations. The company extends its wells horizontally by as much as 5,000 feet at the deepest point. It couples horizontal drilling with hydraulic fracturing, or fracking, to extract geothermal energy from rock formations.

Most wells at Cape Station are 8,000 to 9,000 feet deep, and the deepest one is 15,000 feet below the surface, Gates pointed out.

Gates also emphasized the water-conserving, closed-system setup at Cape Station.

“Geothermal energy is one of the more climate-friendly sources of power, but one of its downsides is how much water it uses. … Fervo’s technology captures all the water that would’ve been lost and recirculates it underground to keep the system running,” he wrote.

Houston's Fervo Energy has secured new funding for Cape Station, its Utah geothermal energy plant. Photo courtesy Fervo Energy.

Fervo Energy lands $200 million in capital for new geothermal project

fresh funding

Houston-based Fervo Energy, a producer of geothermal power, has secured $205.6 million in capital to help finance its geothermal project in southern Utah.

The money will go toward the first and second phases of Cape Station, a geothermal energy plant being developed in Beaver County, Utah. Beaver County is roughly an equal distance between Salt Lake City and Las Vegas.

The $205.6 million in capital came from three sources:

  • $100 million in equity from Breakthrough Energy Catalyst, a Kirkland, Washington-based platform that invests in emissions-reducing projects.
  • $60 million addition to Fervo’s existing loan from Mercuria, a Swiss energy and commodities trader. The revolving loan now totals $100 million.
  • $45.6 million in additional bridge debt financing from XRL-ALC, an affiliate of Irvington, New York-based X-Caliber Rural Capital. X-Caliber is a USDA-approved lender. The initial bridge loan was $100 million.

The first phase of Cape Station will supply 100 megawatts of carbon-free electricity to the power grid starting next year. Another 400 megawatts of capacity is supposed to go online by 2028. Fervo has permission to expand Cape Station’s capacity to as much as 2 gigawatts. On an annual basis, 2 gigawatts can supply enough electricity to power about 1.4 million homes.

“These investments demonstrate what we’ve known all along: Fervo’s combination of technical excellence, commercial readiness, and market opportunity makes us a natural partner for serious energy capital. The confidence our investors have in Fervo and in the Cape asset affirms that next-generation geothermal is ready to play a defining role in America’s energy future,” David Ulrey, Fervo’s CFO, said in a news release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”