How can Houston's energy transition be built with the city's communities in mind? Through trust, public education, and intention, according to a panel of experts. Photo via Getty Images

As the energy sector transitions toward a more sustainable future, a Houston organization is driving forward the idea to do so with a community-based approach, as some experts discussed at a recent breakfast panel.

The Center for Houston's Future hosted a breakfast discussion on August 10, entitled "Building a Community-Based Approach to the Energy Transition," sponsored by BP Energy. The conversation covered various ways corporations, organizations, and individuals could work together to build this approach, including through education, upskilling, collaborations, and more.

Photo by Laura Goldberg/Center for Houston's Future on LinkedIn

The event kicked off with a keynote address from Brad Townsend, vice president of policy and outreach at the Center for Climate and Energy Solutions, who set the scene for the discussion.

“The energy transition offers an opportunity to build a thriving, just, and resilient net-zero economy that can benefit companies and communities alike" he says to the crowd. "It’s the chance to raise jobs standards and safely through local and federal policies, employ a practice change, cross-sector collaboration, and worker training.

“It's also an opportunity to diversify the workforce to better reflect local communities, including in Houston," he continues. "If we approach this engagement however as a box checking exercise or unwilling to really provide communities an opportunity to help shape projects, we’re destined to fail. Being genuinely open to feedback from communities and actively incorporating them into the decision-making process is foundational to generating the community buy-in that will be crucial to a successful energy transition.”

Here were some of the key takeaways from the event.

"When we talk about Houston we need to be cognizant that it is a huge geographical area, and you cannot speak to Houston as a monolith. You can't even speak to individual communities as single entities."

— Anne Bartlett, vice president of industry and community resources at Brazosport College.

"Our responsibility is to recognize and really understand our communities not just from labor market data perspective, but also by having conversations with people who know what’s happening on the ground," she continues. "Our charge is to recognize that yes, this is a regional opportunity but it really does need to be situationalized in our specific communities and recognize the strengths and the opportunities that are present in all of those."

"One of the opportunities and challenges that's part of this massive energy transition, which I think will not only bring about investments of billions of dollars but potentially trillions of dollars, is to utilize these significant investments as an opportunity to not only transform how we make, use, and transport energy, but also uplift these communities that are adjacent to the facilities where hydrogen and other resources will be will be produced."

— John Hall, president and CEO of Houston Advanced Research Center.

"We (need to) use this entire transformational effort to open the doors of opportunity for every community," he adds.

“While it is the right thing to do to bring in the full breath of diversity that we have, it's (also) absolutely necessary.”

— Mark Crawford, senior vice president at BP Energy.

"We're in in Houston. We are the most diverse city in the United States, and the United States is becoming more and more diverse," he explains.

"It is important to bring holistic solutions to communities. ... We can't do everything, but there are organizations working on the ground that are doing really great work. It's about companies going in and partnering with stakeholders on the ground who understand the communities so that we are bringing these wrap-around services."

Crawford continues, noting that it's on companies like BP to tap into and support local entities.

“There's a fundamental shift that needs to happen in the way that we're talking about these jobs to really encourage young people to take advantage of resources that are made available, because we can integrate that into the educational curriculum, but unless students and young people are willing to move in that direction it's not going to make a difference.”

— Townsend says on the panel, addressing the sentiment that young people are told job security comes only with a college degree. The panelists agree this isn't the case anymore, yet that message is still being conveyed.

“I think it's really important to pull back and recognize the opportunity that's in the K-12 space — not only with the children and making sure that they're aware that these careers even exist, but perhaps just as importantly with their parents.” 

Bartlett says, adding that these kids will be the ones in thes jobs in 10 or so years, so that message needs to start being conveyed now.

“All of these things cost money. There are dollars that are out there right now that we are not leveraging — there are dollars that are available through the Texas Workforce Commission, through Chambers of Commerce. So, we're not talking about having to reinvent the wheel and having to go to our industry partners with palms up, we're talking about leveraging the resources that are already out there in a wiser way.”

Bartlett says about the feasibility of workforce development programs.

“It would be unfortunate — (and) it would be potentially catastrophic — if we see the trillions and trillions of dollars invested over the next 20 years, and we have left behind 25 percent or more of citizens.”

Hall says, emphasizing how important working with communities — and hearing their concerns — is to this process.

He later adds that he's worked with community leaders, and he knows they are optimistic — as is he — about this process. “These are not peculiar human beings. They have the same hopes and dreams that we have, and if we will take the step to just reach out and connect and communicate with sincerity, then those barriers are easier to overcome.”

A Houston organization is hosting an important breakfast panel on building a community around the energy transition. Photo via Getty Images

Can’t-miss Houston event: Building a Community-Based Approach to the Energy Transition

where to be

Being successful in the energy transition is going to require an all-hands-on-deck approach. A handful of Houston experts are gathering this week to check in on the progress of this mission.

When: Thursday, August 10, from 7:30 to 8:00 a.m.

Where: Junior League of Houston, 1811 Briar Oaks Lane

Price: Tickets are $25 and include breakfast

Who: The greater Houston energy community.

Learn more and register.

The Center for Houston's Future is hosting its annual Summer Salon breakfast programming this week. The event will feature an important conversation related to community engagement and the energy transition, issues that are critical to our region’s future.

The morning program will feature a conversation entitled "Building a Community-Based Approach to the Energy Transition," as well as a keynote from Brad Townsend, vice president of Policy and Outreach at the Center for Climate and Energy Solutions, one of the world’s leading environmental policy think tanks. Townsend will unveil conclusions on community engagement in the energy transition from a recent stakeholder roundtable held with Center for Houston's Future.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.