Clockwise from top left: Sean Kelly of Amperon, Dianna Liu of ARIXTechnologies, Matthew Dawson of Elementium Materials, Vibhu Sharma of InnoVent Renewables, Cindy Taff of Sage Geosystems, and Emma Konet of TierraClimate. Photos courtesy

From finding funding to navigating the pace of traditional oil and gas company tech adoption, energy transition companies face their fair share of challenges.

This year's Houston Innovation Awards finalists in the Energy Transition category explained what their biggest challenge has been and how they've overcome it. See what they said below, and make sure to secure your tickets to the Nov. 14 event to see which of these finalists win the award.

"The evolving nature of the energy industry presents opportunities to solve some of our industry's greatest challenges. At Amperon we help optimize grid reliability and stability with the power of AI demand forecasting." 

Sean Kelly, CEO of Amperon, an AI platform powering the smart grid of the future

"The biggest challenge in leading an energy transition-focused startup has been balancing the urgency for sustainable solutions with the slow pace of change in traditional industries like oil and gas. Many companies are cautious about adopting new technologies, especially when it comes to integrating sustainability initiatives. We overcame this by positioning our solutions not just as environmentally friendly, but as tools that improve safety, efficiency, and cost savings. By aligning our value proposition with their operational goals and demonstrating real, measurable benefits, we were able to gain traction and drive adoption in industries that are traditionally resistant to change." 

— Dianna Liu, CEO of ARIXTechnologies, an integrated robotics and data analytics company that delivers inspection services through its robotics platforms

"Scaling up production of hard tech is a major challenge. Thankfully, we recruited top-notch talent with experience in technology scale-up and chemical processes. In addition, we've begun building partnerships with some of the world's largest chemical manufacturers in our space who are excited to be a part of our journey and could rapidly accelerate our go to market strategy. We have significant demand for our product as early as 2025, so partnering with these companies to scale-up will bring our technology to market years ahead of doing it alone."

— Matthew Dawson, CEO of Elementium Materials, a battery technology with liquid electrolyte solutions

"Our pyrolysis reactor is a proprietary design that was developed during Covid. We ran simulations to prove that it works, but it was not easy to test it in a pilot facility, let alone scaling it up. We managed ... to run our pilot plant studies, while working with them remotely. We proved that our reactor worked and produced high quality products. Later, we built our own pilot plant R&D facility to continue running tests and optimizing the process. Then, there was the challenge of scaling it up to commercial size. ... We put together a task force of four different companies to come together to design and build this complex reactor in record time."

— Vibhu Sharma, CEO of InnoVentRenewables, a startup with proprietary continuous pyrolysis technology that converts waste tires, plastics, and biomass into valuable fuels and chemicals

"Energy storage and geothermal power generation are capital-intensive infrastructure projects, requiring investors with a deep commitment and the patience in terms of years to allow the technology to be developed and proven in the field. One challenge is finding that niche of investors with the vision to join our journey. We have succeeded in raising our $30 million series A with these types of investors, whom we’re confident will continue the journey as we scale." 

— Cindy Taff, CEO of SageGeosystems, an energy company focused on developing and deploying advanced geothermal technologies to provide reliable power and sustainable energy storage solutions regardless of geography

"The biggest challenge we've faced has been to bring together massive independent power producers on one side who are investing hundreds of millions of dollars into grid infrastructure with multi- national tech giants on the other that don't have experience working much with energy storage. As a startup with only four employees, gaining credibility with these players was critical. We overcame this hurdle by becoming the preeminent thought leader on storage emissions, through publishing white papers, discussing the issues on podcasts, and (more)."

— Emma Konet, CTO of TierraClimate, a software provider that helps grid-scale batteries reduce carbon emissions

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston venture firm invests in Virginia fusion power plant company in collaboration with TAMU

fusion funding

Houston-based climate tech venture firm Ecosphere Ventures has partnered with Virginia Venture Partners and Virginia Innovation Partnership Corporation’s venture capital program to invest in Virginia-based NearStar Fusion Inc., which develops fusion energy power plants.

NearStar aims to use its proprietary plasma railgun technology to safely and affordably power baseload electricity on and off the power grid through a Magnetized Target Impact Fusion (MTIF) approach, according to a news release from the company.

NearStar’s power plants are designed to retrofit traditional fossil fuel power plants and are expected to serve heavy industry, data centers and military installations.

“Our design is well-suited to retrofit coal-burning power plants and reuse existing infrastructure such as balance of plant and grid connectivity, but I’m also excited about leveraging the existing workforce because you won’t need PhDs in plasma physics to work in our power plant,” Amit Singh, CEO of NearStar Fusion, said in a news release.

NearStar will also conduct experiments at the Texas A&M Hypervelocity Impact Laboratory (HVIL) in Bryan, Texas, on prototype fuel targets and evolving fuel capsule design. The company plans to publish the results of the experiments along with a concept paper this year. NearStar will work with The University of Alabama in Huntsville (UAH) to develop computer performance models for target implosions.

NearStar’s MTIF approach will utilize deuterium, which is a common isotope of hydrogen found in water. The process does not use tritium, which NearStar believes will save customers money.

“While avoiding tritium in our power plant design reduces scientific gain of the fusion process, we believe the vastly reduced system complexity and cost savings of eliminating complicated supply chains, regulatory oversight, and breeding of tritium allows NearStar to operate power plants more profitably and serve more customers worldwide, ”Douglas Witherspoon, NearStar founder and chief scientist, said in a news release.

Houston’s Ecosphere Ventures invests in climate tech and sustainability innovations from pre-seed to late-seed stages in the U.S. Ecosphere also supports first-time entrepreneurs and technical founders.

Solar farms are booming and putting thousands of hungry sheep to work

Solar Power

On rural Texas farmland, beneath hundreds of rows of solar panels, a troop of stocky sheep rummage through pasture, casually bumping into one another as they remain committed to a single task: chewing grass.

The booming solar industry has found an unlikely mascot in sheep as large-scale solar farms crop up across the U.S. and in the plain fields of Texas. In Milam County, outside Austin, SB Energy operates the fifth-largest solar project in the country, capable of generating 900 megawatts of power across 4,000 acres.

How do they manage all that grass? With the help of about 3,000 sheep, which are better suited than lawnmowers to fit between small crevices and chew away rain or shine.

The proliferation of sheep on solar farms is part of a broader trend — solar grazing — that has exploded alongside the solar industry.

Agrivoltaics, a method using land for both solar energy production and agriculture, is on the rise with more than 60 solar grazing projects in the U.S., according to the National Renewable Energy Laboratory. The American Solar Grazing Association says 27 states engage in the practice.

"The industry tends to rely on gas-powered mowers, which kind of contradicts the purpose of renewables," SB Energy asset manager James Hawkins said.

A sunny opportunity
Putting the animals to work on solar fields also provides some help to the sheep and wool market, which has struggled in recent years. The inventory of sheep and lamb in Texas fell to 655,000 in January 2024, a 4% drop from the previous year, according to the most recent figures from the U.S. Department of Agriculture.

Because solar fields use sunny, flat land that is often ideal for livestock grazing, the power plants have been used in coordination with farmers rather than against them.

Sheepherder JR Howard accidentally found himself in the middle of Texas' burgeoning clean energy transition. In 2021, he and his family began contracting with solar farms — sites with hundreds of thousands of solar modules — to use his sheep to eat the grass.

What was once a small business has turned into a full-scale operation with more than 8,000 sheep and 26 employees.

"Just the growth has been kind of crazy for us," said Howard, who named his company Texas Solar Sheep. "It's been great for me and my family."

Following the herd
Some agriculture experts say Howard's success reflects how solar farms have become a boon for some ranchers.

Reid Redden, a sheep farmer and solar vegetation manager in San Angelo, Texas, said a successful sheep business requires agricultural land that has become increasingly scarce.

"Solar grazing is probably the biggest opportunity that the sheep industry had in the United States in several generations," Redden said.

The response to solar grazing has been overwhelmingly positive in rural communities near South Texas solar farms where Redden raises sheep for sites to use, he said.

"I think it softens the blow of the big shock and awe of a big solar farm coming in," Redden said.

Fielding more research
Agrivoltaics itself isn't new. Solar farms are land-intensive and require a lot of space that could be used for food production. Agrivoltaics compensates by allowing the two to coexist, whether growing food or caring for livestock.

There is a lot still unknown about the full effects of solar grazing, said Nuria Gomez-Casanovas, an assistant professor in regenerative system ecology at Texas A&M University.

Not enough studies have been done to know the long-term environmental impacts, such as how viable the soil will be for future agriculture, although Gomez-Casanovas suspects solar grazing may improve sheep productivity because the panels provide shade and can be more cost-efficient than mowing.

"We really have more questions than answers," Gomez-Casanovas said. "There are studies that show that the land productivity is not higher versus solar alone or agriculture alone, so it's context-dependent."

As one of Texas' largest solar sheep operators, Howard has more clients than he can handle. He expects to add about 20 more employees by the end of this year, which would nearly double his current workforce. As for the sheep, he has enough already.

Chevron and partners to develop innovative power plants to support AI-focused data centers

power partners

Houston-based Chevron U.S.A. Inc., San Francisco investment firm Engine No. 1, and Boston electric service company GE Vernova have announced a partnership to create natural gas power plants in the United States. These plants support the increased demand for electricity at data centers, specifically those developing artificial intelligence solutions.

“The data centers needed to scale AI require massive amounts of 24/7 power. Meeting this demand is forecasted to require significant investment in power generation capacity, while managing carbon emissions and mitigating the risk of grid destabilization,” Chevron CEO Mike Wirth, shared in a LinkedIn post.

The companies say the plants, known as “power foundries,” are expected to deliver up to four gigawatts, equal to powering 3 million to 3.5 million U.S. homes, by the end of 2027, with possible project expansion. Their design will allow for the future integration of lower-carbon solutions, such as carbon capture and storage and renewable energy resources.

They are expected to leverage seven GE Vernova 7HA natural gas turbines, which will serve co-located data centers in the Southeast, Midwest and West. The exact locations have yet to be specified.

“Energy is the key to America’s AI dominance, “ Chris James, founder and chief investment officer of investment firm Engine No. 1, said in a news release. “By using abundant domestic natural gas to generate electricity directly connected to data centers, we can secure AI leadership, drive productivity gains across our economy and restore America’s standing as an industrial superpower. This partnership with Chevron and GE Vernova addresses the biggest energy challenge we face.”

According to the companies, the projects offer cost-effective and scalable solutions for growth in electrical demand while avoiding burdening the existing electrical grid. The companies plan to also use the foundries to sell surplus power to the U.S. power grid in the future.